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ABSTRACT

The problem studied in this thesis is the guidance of interplane-
tary vehicles which are thrusting for a large portion of the transfer.
The vehicle is represented by a seven component state vector consist-
ing of the position, velocity and mass of the spacecraft. The analysis
is linearized by assuming that the actual state of the vehicle differs
only a small amount from a known reference state. The reference
trajectory is assumed to be a propellant-optimal path connecting the
initial and final points.

The goal of the postulated guidance system is to satisfy position
and velocity conditions at the target with minimum propellant expedi-
ture. Both fixed-time-of-arrival and variable-time-of-arrival guid-
ance are discussed. Specification of the guidance criterion in the
above manner permits the techniques of optimal control theory to be
applied to the problem. Emphasis is placed on finding an analytic
solution of the linearized equations. The desired solution is the con-
trol program which satisfies boundary conditions and minimizes pro-
pellant expenditure.

The method for solving the guidance problem is shown to be suit-
able as a technique for computing optimal reference trajectories. The
trajectories are computed by iterative application of the guidance sol-
ution. Application of the guidance solution to the trajectory problem
is shown to exploit an interpretation of the Euler equations which per-
mits simplification of the computation technique.

The guidance solution is tested in a numerical example by using
it to compute trajectories from Earth's orbit to the Martian orbit for
different low-thrust vehicles.

The guidance solution is based on the assumption that vehicle
state is known at the time a new control program is to be generated.
Prior studies by several investigators detail methods of using celestial
measurements to estimate state. A portion of this report is devoted
to extending the method of celestial measurements to include measure-
ment of engine performance. The additional measurement is shown
to improve the estimate of state.
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A discussion is presented of the difficulties arising from differ-

ences in the criterion for optimality as interpreted from the calculus
of variations and from Pontryagin'_s maximum principle.
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six by six weighting matrix
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normalized mass variable

n by k weighting matrix for measurement data

six by six skew symmetric matrix of identities
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six by six weighting matrix
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vector
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seven component state vector

seven by seven state transition matrix; scalar terminal
time
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n by n matrix of state uncertainties

n component vector of state uncertainties; three component
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n component vector of scalar switching functions; switching
function

A increment of a quantity

6 variation of a quantity

n component vector of measurement error; measurement
error

six component miss vector which results if reference con-
trol is removed

0

]_ **

n by n diagonal matrix of correlation functions; heliocentric

transfer angle

seven by seven matrix of adjoint functions

six by seven matrix of adjoint functions

six by six matrix of adjoint functions

X n component vector of Euler variables

gravitational constant for central body

E six component vector of Euler variable initial values

six component miss vector which results if the reference
control is used and a state variation occurs
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n by n matrix of measurement variance

standard deviation of a measurement
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The preceding symbols and the mathematical expressions used

throughout the thesis will in general conform to the following rules:

Example

I. A capital letter designates a matrix unless
otherwise noted. A
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o

o

o

o

,

o

o

.

I0.

Underscored letters, both upper and lower

case, represent column vectors.

Superscript T represents the transpose
of a matrix or vector

Superscript -I represents the inverse
of a matrix

Unless underscored_ lower case letters

represent scalar quantities

Juxtaposition of matrix and vector sym-
bols represents matrix multiplication

The_determinate of a matrix and the

magnitude of a vector (when lower case

letters are ambiguious) will be indicated

by vertical bars°

Vertical brackets indicate a column

vector composed of the enclosed
quantities.

Square brackets indicate a matrix

whose elements are the quantities
enclosed

Diamond brackets indicate the time

average of the enclosed quantities.

Example

_P,r

A T, pT

A-1

r

AB T
PQ

IAIorlrl

<e T>

The _onventional dot notation is employed to indicate the time

derivative of a quantity with respect to a non-rotating reference frame.

Subscripts are used to supplement the fundamental notation.

Subscripted variables are defined as they are introduced.
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CHAPTER I

INTRODUCTION

Early in the investigation of rocket propulsion for extra-terrestrial

travel, it became apparent that conventional chemical propellants were

inadequate for many interesting space missions 1.,2,3,4 This fact is

due to the relatively low energy content per unit mass (specific energy)

of chemical fuels. The theoretical mass ratios required for many inter-

esting missions in the solar system approach numbers of the order of

10 3 and higher when chemical fuels are used5o

The need for more efficient means of propulsion has led to the

investigation of energy sources other than chemical re_ctionso Such

studies have produced an entire spectrum of propulsive techniques 6,

each having particular mission capabilities and each having its own

theoretical and practical difficulties° In general, the use of higher

specific energies is accompanied by a decrease in propellant fl.ow rate

and longer propulsion time for a given mass ratio° In limiting cases

the propulsion time equals the transfer time° In addition, a longer pro-

pulsion time permits reduction of thrust levels for a given total impulse°

The terms "continuous thrust" and "low thrust" stem from these two

effects of high specific energy° Although the terms are not synonymous_

they are Often used interchangeably in the literature since they apply to

the same types of vehicles° In the subsequent discussion, "continuous

thrust" is used to describe vehicles which thrust for a major portion of

the transfer and "low thrust" refers to vehicles which have acceleration

levels less than about 10-3go .

_This study is concerned primarily with those propulsion methods

which rely upon a separate energy source* for the generation of pro-

pulsion energy. With few exceptions, these are low thrust devices°

*Underlined words are defined in footnotes°

separate energy source: propulsion system characterized by a power
plant which is independent of the thrust-producing mechanism.



Where it is necessary to be more specific, an on-board nuclear reactor

is assumed.

We shall not be concerned with further justifying the use of these

devices, nor with defining their regions of usefulness. Such questions

are well covered in the literature2'3'4'6.1 The_ goal here is to assume

that such vehicles will exist and to study the problem of Guidance ir-

respective of the mission or of the particular propulsion method use_

i. 1 The Guidance Problem

The presence of a thrust acceleration, acting over a significant

portion of the spacecraft trajectory, introduces complexities in the

analysis of spacecraft motion which make many of the techniques in

common use for ballistic vehicles inapplicable. In particular, the ele-

gant conic representations can be used only when the thrust may be

treated as a small disturbing force. In general this is the case only in

the region near a central body. Consequently it is desirable to formu-

late continuous-thrust investigations within a body of mathematics hav-

ing sufficient applicability to treat most problems of interest° The

calculus of variations and the concepts of optimal control theory meet

this need.

In the terminology of this branch of applied mathematics, guidance

of continuous-thrust spacecraft is the problem of finding a control pro-

gram which transfers the spacecraft between two given points in space

subject to constraints on the velocity at both terminal points. Since

such programs are not unique, it is possible to place additional con-

straints on the solution such that some desired quantity (the cost func-

tion) is maximized or minimized. Thus_ in addition to satisfying fixed

boundary conditions at both launch and target points, solutions may be

found which minimize transfer time, or propellant consumed or some

Guidance: as used in this thesis, the term refers to the process of
determining a control program.

control: as used in this thesis, the term refers to the quantity or quan-
tities (thrust or acceleration) representing the propulsive effort. It
also refers to the mechanical process of directing the propulsive effort

in accordance with the control program.
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other quantity appropriate to the mission.. This thesis is concerned

with maximizing only the final mass° At the present time no method

has been found which will prove rigorously that the solutions obtained

in inverse square (and more general) gravitational fields satisfy the
7

condition for an absolute maximum of the final mass One can only

show that the solutions produce a maximum in the region of space under

consideration., ioe° local maxim_ and then demonstrate from physical

reasoning that other solutions are not likely°

From the viewpoint of gmdance_ initial conditions for the two-point

boundary value problem are represented by the present state of the

vehicle° If a vehicle can be flown m accordance with the solution that

exists at the instant of ]a.unch_ only cne solution is needed° Such a case

is a problem in control_ not in guidance. That is_ the desired thrust

program is known (guidance) and the magnitude and direction of thrust

must be controlled so that the spacecraft follows the desired trajectory

(control). Even with "tight" control loc,ps_ however_ perturbations in-

evitably occur which cause the spacecraft to depart from t_e original

optimized trajectory° When this happens a new control program must

be found which will cause transfer from the present state to the final

state such that final mass is maximized° This is the problem we desire

to solve° It follows_ that if a solution can be found for the guidance prob-

lem_ then by considering the launch state as the present state, the op-

timized trajectory connecting the launch point and target point may be

determined, jfAThis latter application of the guidance techniques leads to

that part of the thesis described as "trajectory computation° "_

In the preceding paragraph it was emphasized that the present state

of the vehicle serves as the initial condition for the boundary value prob-,

lemo It is necessary° therefore that some method exist for determining

the state of the vehicle at any time, In this thesis the unique features

state: refers to the seven quantities which describe the vehicle in terms
of physical variables°

present state: refers to the vehicle state as determined by the space
navigator, io e o the state at the present instant of time° In this thesis

navigation refers to the process of determining state from measure-
ments o

3



of a continuous-thrust vehicle are examined from the viewpoint of

estimating vehicle state.

Finally, the concept of constant exhaust power is examined as a

criterion for low-thrust transfers° It is easily shown that if a linear

system is power-limited, as in the case of separately powered rockets_

the minimum expenditure of energy results from operation at maximum
7

continuous power The application of this principle has been used ex-

tensively throughout the literature 8,9_, i0 An analogous treatment of

thrust-limited rockets is examined here.

I. 2 Prior Studies

Published works on guidance of interplanetary low-thrust vehicles

were almost nonexistent prior to early 1963. Miller II produced a

guidance technique for cis-lunar space in his doctoral research in 1961.

This technique consists of spiralling out from the Earth to some point

from which the vehicle may coast to the vicinity of the moon_ then

matching the unique velocity vector, corresponding to the present posi-

tion of the vehicle, which will result in achieving the target point.

Miller showed that guidance of this type results in a relatively small

fuel penalty for lunar missions.

I0
Friedlander formulated the problem in the classical calculus of

variations and solved the adjoint equations in two dimensions for the

sensitivity coefficients of the state variables along an optimized tra-

jectory to Mars. In reference 12_ he suggests a linearized solution

which minimizes a quadratic function of the control variable variation°

The solution approaches but does not attain the control program for

maximum final mass. In reference 13 Friedlander applies his tech-

niques to a vehicle using a Snap-8 power source.

The most recent work is that of Pfeiffer 14 who applies some of the

newer developments in the theory of optimal control to the low-thrust

guidance problem. Pfeiffer solves the guidance problem and minimizes

power limited: refers to a propulsion system characterized primarily
by a maximum power level.

thrust limited: refers to a propulsion system characterized primarily
by a maximum thrust level°



a penalty function which is "equivalent" to a quadratic form of the final

state error. The control program produced by this method satisfies

the boundary conditions "as closely as possible using the penalty func-

tiono" (the quotation marks are from the reference) Pfeiffer's method,

however, is not applicable to problems where certain boundary values
are fixed

Much of the recent work in optimal control theory concerns sys-
tems which have mathematical models similar to those for low-thrust

vehicles. Many of the ideas developed in these investigations are

directly applicable to the problem considered here. Significant con-
tributions are attributable to Pontryagin 15, Kalman 16 and Breakwel117

who have formulated existence theorems and derived necessary and

sufficient conditions for optimal trajectories° Breakwell has also

contributed important work in specifying the form of solutions with
18

constrained control vectors° Athans._Falb and LaCross working

together and individually have solved many special cases of optimal

trajectories for constrained control vectors.

_Fundamental any guidance study a qualitative knowledgeto. is of the

trajectory along which the space vehicle is to travel J Quite properly

then_ the earliest work in low-thrust propulsion consisted of studies of

engine characteristics and trajectory characteristics° Several of the

earlier studies of engine characteristics have been previously refer-
19

encedo To those must be added the contributions of Langmuir and
2O

Irving

In the area of trajectory studies Tsien 21 performed some of the

earliest work (1953). This was followed several years later with con-
tributions by Lawden22.. Moecke123_ Melbourne24and Zimmerman,

McKay and Rossa 25, The problem which confronted these authors was

that analytic solutions to the trajectory problem can be found only for

linear gravitational fields° For central force fields and more complex

configurations, solving the two-point boundary value problem was a

tedious trial-and-error procedure requiring the use of high speed digit-

al computation° Satisfying an additional constraint for an optimized

trajectory was tedious and time consuming even with high speed

5



26
computers. The work of Bryson and others in the late 1950's and

early 1960's served to simplify the machine procedures so that com-

putation of optimal trajectories became less tedious and less time

consuming.

I. 3 Thesis Philosophy and the Method of Approach

Throughout the research and writing of this thesis the author has

attempted to consider the low-thrust guidance problem from the view-

point of a space navigator who is responsible for the safe and timely

arrival of the spacecraft at the target point. The extrapolation of air-

craft navigation experience into space navigation is, at bests a hazard-

ous undertaking; however, it does provide a basis for certain decisions

which have influenced the author's approach to this investigation. The

following criteria were established from this philosophy and have been

used when it became necessary to make definite assumptions°

i) The mission is manned_ probably utilizing more than one

vehicle_ each of which is manned by several crewmen°

2) The mission duration is limited by consideration of human

tolerances_

3) The spacecraft configuration and the mission have been sped-

lied. Hopefully_ the spacecraft characteristics are optimum

for the mission_ but may not be.

4) Whatever the mission_ at each of several points along the tra-

jectory the navigator has three choices:

a) to rendezvous with the target point at the preplanned time

such that the trajectory minimizes propellant consumed°

b) to rendezvous with the target point utilizing a time and

trajectory such that propellant consumption is minimized°

c) to rendezvous with the target point in minimum time utiliz-

ing the available propellant. This alternative is not

treated in the thesis.

These guidelines establish the general context within which the guidance

problem is to be solved. Let us now proceed to examine the specific

items which complicate the solution.



I) The mathematical theory concerning optimal trajectories dic-

tates that the first variation of the optimized quantity must
vanish for the optimal path when the control is unconstrain-
ed27"28_29 As a consequence., if the optimized quantity is a

state variable_ the matrix of coefficients relating the control

variables to the state variables is singular and its time inte-
gral along the optimal trajectory is also singular 12_14 The

singularity is proven in Appendix C. Solutions for the optimal

control usually require inversion of this matrix° The prob-

lem of singular matrices is handled in this study by a method

of deleting certain matrix elements which create the singular-

ity and by the formatien of a new matrix which can be inverted.

The deletion method is an important part of the thesis and

provides a general method for treating certain singularities

without reformulating the problem°

2) Optimal trajectories for constrained centrol variables often

possess discontinuities in the first derivatives of one or more
state variables and in the control variables,. This mathemati-

cal problem is handled by the use of switching functions which
are continueuso

3) Optimal trajectories for constrained control variables require

periods of maximum control magnitude° Therefore_ if the

maximum propulsive effort is required for the optimum tra-

jectory_ guidance around the optimum is limited to changes in

thrust direction unless reserve propulsive power is available

for guidance° The assumption that reserve power is available

is used for thls study°

It was stated in section io 1 that the low-thrust guidance problem

may be treated as a two-point boundary value problem in the calculus
of variations 2_'_28_29 Thus techniques of the calculus of variations

constitute a primary mathematical tool_. One of these techniques is the

method of adjoints_ which plays a fundamental part in subsequent chap-
terso The author has borrowed heavily from newer theories in optimal
controllT, 18 since the state space formulations widely used in the

7



literature of that field are applicable to low-thrust guidance° One of

the more useful tools in optimal control theory is associated with

Pontryagin 15 although other authors have used the same principle 16,

A derivation of Pontryagin_s maximum principle is outlined in

Appendix D for convenience of the reader,

To facilitate notation and to preclude the possibility of fundamental

notions becoming obscured by the quantity of algebraic detail, matrix

notation and the ideas of matrix calculus are used throughout° Finally,

to test the thesis, numerical analysis and an IBM 7094 were employed°

i.4 Relationship to Prior Studies

In the research preceding this study, the author began with the

formulations of Friedlander I0 and Melbourne 8'24, and attempted to

extend their ideas into areas of more general application and to find

solutions to the guidance problem which were useful from the space

navigator's viewpoint. One of the fundamental considerations was to

find control laws which optimize propellant consumption. Cost func-

tions which produce near-optimal propellant consumption were rejected.

The idealized formulations for the separately powered rocket re-

quire a wide range of thrust and of specific impulse as the vehicle

traverses its trajectory. Current technology indicates that variable-

specific-impulse thrusters will not be available in the forseeable

future, at least for electrostatic vehicles. To satisfy this engineering

restriction_ investigators have continued to use the power-limited for-

mulations but approximate the optimal thrust magnitude programs with

regions of constant specific impulse where relatively low values of

specific impulse are required and with coast elsewhere. It is shown

in this thesis that the so-called "bang-bang" control used to satisfy the

engineering restriction can be derived by abandoning the concept of

power-limited thrusting.

In section i. 1 the necessity of estimating the state is discussed,

The works of Battin 30 Stern 31 and Potter and Stern 32 serve as the

electrostatic (propulsion) : A propulsion method depending upon the

acceleration of charged particles through an electrostatic field.



starting point for extending_ to the low-thrust cases the navigation tech-

niques (estimate of state) which have been developed for ballistic vehicles.

Finally_ using the guidance solutions an iterative technique for com-

puting low-thrust trajectories is developed° Recent investigations in the

field of trajectory computation appear to rely heavily on steepest ascent

techniques° These techniques requi_'e _-ather complex programs._ care-

ful handling and suffer from the problem of slow convergence as the

optimal trajectory is approached° The technique suggested in this

study appears to be faster even for discontinuous control variables°

i. 5 Summary of Thesis Objectives

In closing this introductory chapter it seems appropriate to provide

a sketch of the objectives of subsequent discussions.. Briefly_ the ob-

jectives of this thesis are: i) to present a linear noniterative method

for deriving a control program for guidance of low-thrust space vehicles

with respect to a propellant-optimalreferencel; 2) to show that the com-

puted control programs satisfy the necessary conditions for an optimum_

3) to show that the method may be extended to trajectory computation by

successive iteration of the guidance solution; 4) to examine a method of

estimating the state of continuous-thrust vehicles and 5) to examine the

concepts of power_4imited and thrust-limited vehicles from the view ._

point of guidance°

The fundamental argument of the thesis may be extracted from

these several objectives° It is: "There exists a linear method which

produces a propellant-optimal control program in a noniterative form

-for guidance of power-limited and thrust-limited space vehicles, and

which provides a simple_ rapidly converging iterative technique for com.-

puting propellant- optima], trajectories°

propellant-optimal: refers to a trajectory which results in minimum

propellant usage°



CHAPTER II

THE LOW-THRUST SPACE VEHICLE

2. 1 Summary of Chapter II

In this chapter the parameters which characterize low-thrust vehicle

performance are derived and discussed. The constant-exhaust-power

concept, which has been widely used in the past, is shown to be the op-

timum method of engine control. The propellant cost accruing from

engineering restrictions on variable specific impulse is computed for

field-free space by analytic methods. Both methods of engine controls

the ideal and the practical, are discussed from the viewpoint of guidance°

Finally, the results of a numerical study, which confirm the derivations_

are presented.

2. 2 The Use of a Separate Energy Source

One may verify from momentum considerations that the instantane-

ous force exerted on a space vehicle by its exhaust stream is:

f = mc (2-1)

where f is the force vector, c is the oppositely directed exhaust velocity

and m is the mass rate of the vehicle. (-m is the propellant flow rate )

Since, the force magnitude may be held constant if m and c are

varied inversely, the selection of a high exhaust velocity and low pro-

pellant flow tends to reduce the total amount of propellant required for

a given impulse. Unfortunately, processes which use the products of

combustion as the propellant are unable to produce_ simultaneously_ the

low flow rates and high exhaust velocities required for many interesting

missions. If we use specific impulse, Isp _ as a measure of the engine

performance, where

I - c _ f (2-2)

sp go (-m) go

10



and go is the acceleration due to gravity at the Earth's surface_ then
chemical systems are limited to values of specific impulse under 600
seconds and direct nuclear systems to values of about 1600 seconds5o

However_ if a separate energy source is available_ the source energy

may be converted into electt_ical energy and used to accelerate charged

propellant particles° Values of specific impulse in the range of 3000
6

to 20,000 seconds appear attainable in this way o

Several energy sources and conversion processes are under inves-

tigation. These may be divided into the two broad categories of direct

or indirect energy conversion° Direct methods may be characterized

by the absence of a mechanical phase in the conversion process° Power

from solar cells is one example of this type° Direct production of elec-

trical energy in a nuclear reactor is another° Apreposa] for this latter

method is discussed in reference 33. however it has not been proven in

the laboratory°

Indirect conversion of the source energy into electrical energy

appears_ at the present time to be more realistic for large manned

spacecraft, which have power requirements in the range of several

megawattso The process generally considered most promising uses a

nuclear source to power turbomachinery for the production of electrical

energy° A block diagram of this type system is presented in Figure2-ao

In this reporL an on-board energy source is explicitly assumed

although much of the guidance analysis is independent of such considera-

tions,. This assumption permits the power availability to be independent

of the trajectory° This is not the case.°for example., when solar energy

collectors are used since for a given collector area the power availa _
bility varies inversely with the square of the distance to the sun..

2o3 The Constant-Power Concept

Separate energy sources are most often, described as power-limited

devices° That is_ their rate of energy conversion is the design criterion°

If the energy produced by the scurce is all converted to propulsive en-

ergy then the power in the exhaust stream is given by

ii
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Fig. 2-a. Schematic diagram of separately powered rocket.

2
-mc

p - (2-3)
2

(The efficiency of the conversion process will be introduced in a sub-

sequent discussion. )

It is well known that for a large class of problems in linear fields,

minimum total energy expenditure results from operation at maximum

continuous power. This result may be obtained for conservative fields

in general by use of variational techniques as shown in reference 7. The

usual assumption in low-thrust investigations, that exhaust power is a

constant and equal to its maximum value, is therefore, quite valid in the

idealized problem. This result is used to establish parameters for the

separately powered rocket.
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Combining equation (2-3) with the relations

f = -mc (2 -4)

f= ma (2-5)

one obtains

2
-m a

2
m 2p

(2-6)

where a is the thrust acceleration of the vehicle°

tion (2-6) over the flight path yields

tf

1 1 _ 1 f a 2 dt

mf m ° 2p 0

Integration of equa-

(2-7)

where the subscripts indicate initial and final times° Equation (217) is

more conveniently expressed in terms of the mass ratio°

m tf

MR - 1 - o f a 2 dt

2p 0

(2 -8)

Three parameters will now be defined

tf

1 f a 2 dt (2-9)J- 2
0

m E
- (2-10)

P

m E
- (2-11)

m
o

J is the well known acceleration integral_ a is the specific mass of the

propulsion system and must include the total efficiency of energy con-

version when p is the desired exhaust power; _ is the propulsive system

mass fraction and m E is the propulsive system mass Substituting

these parameters into equation (2-,8) one obtains

MR = 1 + a_ j (2-12)

13



For a spacecraft with fixed parameters and a specified mission,

the minimum mass ratio and thus the minimum propellant usage is

achieved t0r trajectories which make J a minimum.

The objective of trajectory computation and of guidance is to find

a path which accomplishes the mission and minimizes J.

2. 4 Limitation of the Constant-Power Concept

Using the equations of section 2. 3, the thrust acceleration may be

expressed as

a - 2p (2- 13)

cm

Figure 2-b shows a plot of the thrust acceleration magnitude during a

fast transfer to Mars for which J is a minimum. The absolute value

2.5

0o
1 I I

I0 20 30 40 50 60 70 80 90 I00 I10 120 130

TIME (DAYS)

I __

140 50

Fig. 2-b. Optimum acceleration level for variable-specific-impulse Earth-Mars transfer.
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of acceleration has a variation over two orders of magnitude° From

equation (2-13) it is apparent that the exhaust velocity_ (toeo_ the specif-

ic impulse) must have a similar range of values since m is monotoni-

cally decreasing° However_ the current thinking of investigators who

are studying propulsive devices indicates that in a given thrust pro-

ducer_ only a very small range of exhaust velocity variation will be

feasible unless major advances in technology are forthcoming° The

thrust producer can be designed for one particular exhaust velocity°

Operation at other than the design point tends to decrease efficiency

and shorten, markedly_ the useful lifeof the device°

19
This restriction on exhaust velocity is treated in the literature

as a departure from the ideal conditions of constant exhaust power°

The author treats this restriction from a slightly different viewpoint°

In the succeeding section parametric equations for a constant-specific-

impulse rocket will be derived w_ich are analogous to equations (2-8)

through (2-12). With these parametric equations one may compare

directly the performance of a rocket with specified maximum powers,

under the two modes of propulsive control° ioe,,constant-specific-im-

pulse (CSI) or variable-specific-impulse (VS]I)

2o 5 The Constant-Specific-lmpulse Concept

The propellant-optimal thrust program for a CSI rocket is shown

subsequently to have two magnitudes_ maximum thrust or zero thrust,

In order to allow for maneuvering and for departures from the refer-

ence trajectory_ reserve thrust capability is required° (For VSI rock-

ets this problem does not occur since thrust is continuously variable_ )

A method for controlling thrust magnitude which appears quite attrac-

tive and is compatable with thruster design is to build up the propulsion

unit from a large number of small thruster nozzles of constant specific

impulse. Proposals of this type appear in the literature but are not

analyzed in detai135o Control of thrust magnitude is obtained by con-

trolling the number of thrusters in operation°

If a nuclear energy source is used the power range is not continu-,

ously variable from zero to maximum power and may be limited in the

number of times that stopping and starting is permitted However° the

15



energy source and the thruster units can be operated at their respective

optimums by placing an external high temperature resistor in the sys-

tem which will radiate energy in excess of that required by the thrusters°

Since the nuclear fuel constitutes only a very small fraction of vehicle

weight, this procedure has negligible effect on the final mass of the

vehicle. Figure 2-a shows the propulsive system schematic diagram°

For a propulsion unit constructed in this manner.° the total thrust

of the vehicle is some fraction of the total thrust available° That is

f : -nm c

o

f = -m c
o o

m = nm
o

(2-14)

(2-14a)

(2- 14b)

nf -nm c

o o (2 15)a ....

p = nPo

m m

2
-rim C

o
(2- 16)

where n is the fraction of thrusters in use and fo' -mo and Po are the

maximum values of thrust, propellant flow rate and exhaust power_

respectively.

By eliminating the exhaust velocity, equations (2-14)through (2-16)

may be manipulated into the form

-nm f a
O O

2
m 2Pom

(2-17)

Integrating and expressing the result in terms of the mass ratios one

obtains

m tf f

MR - 1 - o f o a dt (2-18)

2Po o m

Observe that the factor fo/m is the maximum acceleration possible

for a given mass. Therefore the acceleration integral for a thrust-

limited vehicle is proportional to the integral over the thrusting time of

16



the product of the maximum instantaneous acceleration and the instan-

taneous acceleration. Designate this integral J* and observe that for

a vehicle of specified power and initial mass_ the mass ratio is a min-

imum when J* is a minimum°

tf

j, _ 1 f a a dt (2-19)
2 0 max

CL

MR - 1 - J* (2 -20)

Equations (2-19) and (2-20) correspond to equations (2-9) and

(2-12) respectively_ and permit a direct comparison of the performance

of a hypothetical vehicle with given power and given initial mass when

controlled as a VSI vehicle and then as a CSI vehicle°

The comparison is made by finding an optimal trajectory for a

specified mission for each type of control and then comparing the mass

ratios or the acceleration integrals for the two cases° This has been

done for a simulated mission to Mars using techniques described in

later chapters_ and for the simple case of a transfer in field-free space°

2o 6 Comparison of CSI and VSI Control

From a qualitative point of views finding an optimal trajectory for

the VSI machine consists of finding that trajectory which minimizes

propellant expenditure for a given constant exhaust power but with un-

constrained exhaust velocity° In the case of the CSI vehicle:, the prob-

lem is that of finding the trajectory which minimizes the propellant

expenditure subject to a given maximum exhaust power and a given

constant exhaust velocity°

If both vehicles have the same maximum exhaust power and both

control programs optimize propellant consumption then constant,- specific-

impulse is • but a limiting case of variable-specific-impulse and

cannot result in less propellant usage. Therefore the acceleration

integral for a VSI transfer can be used as a reference for assessing

the additional propellant cost of CSI transfers°

17



In order to compare the two vehicles for a transfer in the gravita-

tional field it is necessary to use machine computation. However, they

may be compared analytically in field-free space. The results are

shown to provide reasonable approximations for the values obtained in

the gravitational field.

Assume that in field-free space it is desired to traverse the dis-

tance L in the time T such that the rocket begins and ends at rest. This
problem is solved in the literature for VSI spacecraft 34. The solution

is rederived in Appendix A and the solution for the CSI spacecraft is
also derived.

The results for variable-specific-impulse thrusting are:

6L 2
j

min T3
(2-21)

6L
a (2-22)
o T2

where a is the initial acceleration. The optimum acceleration pro-
O

gram starts at a ° and decreases linearly with time such that a(T) = - a o.

(See Figure 2-c.)

8

6L

O0 : T2 : Z_." j 612

0 T/2_ T

TIME

--(3 0

Fig. 2-c. Optimum acceleration for constant power rocket in field-free space.
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For a normalized mass (i°eo

written in this ease as:

m ° is unity)_ equation (2-12) may be

6L 2
MR- + 1 (2-23)

pT 3

Define the parameter R.

a w 3J (2 -24)
P

MR = _ + 1 (2-25)
3

Therefore in this ease

18L 2
R - (2-26)

pT 3

Equation (2-25) is plotted in Figure 2-do R is an excellent measure

of the difficulty of a mission in field-free space° For example: A

large transfer distance_ a short transfer time and a small energy

source would produce a large value of Ro Such conditions indeed repre-

sent a difficult transfer°

It should be noted that the mass ratio is linear in Ro Thus VSI

transfers characterized by a finite R require finite mass ratios°

For a constant-specific-impulse vehicle of identical power to per-

form this mission requires a specificahon of exhaust velocity or,, more

conveniently_ initial acceleration° In Figure 2-d_ the mass ratio is

plotted as a function of R for two values of initial acceleration° The
6L

first corresponds to a ° T2 and is asymptotic to R = 20° The second,

which corresponds to an optimum value of initial acceleration for CSI

machines is exponential in R,

The optimum initial acceleration for CSI vehicles is

2
a - (in MR) a (2-27)

°(opt)csi R °(opt)vsi

For small values of R such that the mass ratio is near unity_ equation

(2-27) may be simplified to
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3
a - a (2-28)

°(opt)csi 4 °(opt)vsi

The transcendental equations for this example are derived and solved

in Appendix A.

The conclusions that may be drawn from the field-free space

example are:

1) Control of thrust by varying specific impulse but with con-

stant exhaust power is the propellant-.optimal method of con-

trol.

2) For missions represented by small values of the parameter

R_ (less than 5) the propellant penalty for using an optimized

constant specific impulse is less than 15%o

3) For large values of R the propellant cost of constant-specific-

impulse is very large_ even for an optimized CSIo

4) For sufficiently long transfer times the value of R may be

decreased so that the propellant, penalty of constant-specific-

impulse is very small. (As will be subsequently shown,, an

optimized one way trip to Mars corresponds to an R of approx,-

imately 1).

It is not readily apparent that the results derived for field-free

space are directly applicable to transfers in the gravitational fields of

the solar system. However_ Melbourne and Sauer 34 have computed

the VSI acceleration requirements for a number of interplanetary trans-

fers and found the values to be in surprisingly good agreement with the

field-free space analysis. Therefor% it seems valid to argue on the

basis of field-free space when comparing CSI and VSI systems° The

numerical results in this study support this conclusion°

The parameter R_ which includes the effects of both mission re-

quirements and spacecraft power, was found to be more useful in the

comparison of CSI and VSI systems than the acceleration integral alone.

Some significant facts which are evident when R is used as a parameter

but which are missed when the acceleration integral alone is used are:
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I) increasing the spacecraft power for a particular mission

reduces the propellant penalty of CSI operation_

2) the optimum initial acceleration, and thus the optimum ex-

haust velocity for CSI vehicles may be determined to reason-

able accuracy from analysis of the VSI spacecraft using equa-

tion (2-27).

2. 7 Maximizing the Payload

In section 2.6, the problem of maximizing the mass ratio is con-

sidered. In this section the energy source which maximizes the pay-

load for a given mission and mode of operation is computed.

Both CSI and VSI vehicles are characterized by the general equa-

tion:

MR - J + 1 (2-29)

(l

where the term _ J may be written alternatively as --

m
o

P
Jo

If the initial mass of the vehicle is considered to consist of only

three parts: payload, propellant and power source, then the mass dis-

tribution may be written as

mL 1
- 1 - 13 - (i ---) (2-30)

m MR
O

where--
m L

m
o

mL 1

m MR
O

is the payload fraction.

(2-31)

Substituting equation (2-29) into equation (2-31), an expression for

payload fraction is obtained in terms of a, _, and J.

m L

m
o

1 ii (2-32)
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Differentiating equation (2-32) with respect to _ and setting the deriva-

tive equal to zero results in the optimal mass distribution for either

CSI or VSI space vehicles° The result is:

-- = (i _
m o

opt

_opt

opt
m

where p is the propellant fraction_
m

o

= (a j)I/2

= (a j) I/2

(2-33)

- _ J (2-34)

(2 -35)

From the alternative forms of equation (2-29) and equation (2-34)

the optimum exhaust power for a space mission is obtained°

a m
O

For the numerical work in this thesis an optimistic, but not un-

reasonable, value of a was selected° In all subsequent computations,

an a of 10 kilograms per kilowatt is assumed° From the digital com-

puter studies of a 150 day Earth-Mars one way transfer, a value of J

was obtained for the sizing relationships° This value of J was multi-

plied by the factor 4 and rounded off to provide a more realistic value

for a round trip to Mars° The use of an approximation is justified in

that the purpose here is to provide a reasonable value of power for com-

paring VSI and CSI operations without placing undue emphasis on opti-

mizing the round trip mass distribution, That is_ the author is more

concerned with optimal guidance of a space vehicle of given power and

mode of operation than in determining whether the spacecraft is the

best vehicle for the mission° Further, the preceding method of maxi-,

mizing payload, although widely used in low-thrust-studies, does not

adequately treat a round trip mission comprised of several phases such

as escape from Earth, transfer_ capture at the target, a waiting period_
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and similar return phases. Each of the phases may impose particular

requirements which are not compatible with the other phases. For

example, it may be impractical to use I00 or more days to effect a

spiral escape even though the optimized solution requires it. Conse-

quently the derivation in this section must be considered as only an

approximate method of maximizing payload for realistic round trip

mission planning.
-6

The value of J selected was I0 The units are (astronomical

units) 2 per (day)3. Inserting these values of a and J (in comparable

units) into the equation (2-36), a value for Po/mo was computed for use

in the numerical work.

Po
= 0. 0242 kw/kg

m (2-37)
O

= 0. 6988 × 10 -6 (A. u. )2/(day) 3

Using the value obtained in equation (2-37), values of MR were

extracted from computer results and compared with the field-free

space values for both CSI and VSI engine control. The results of this

comparison are plotted on the curves of Figure 2-d. Agreement is

good for the cases tested and warrants further investigation for dif-

ferent values of the parameter R.

Values of initial acceleration and specific impulse which are char-

acteristic of the values obtained in the numerical studies are

ao/g ° = 1.2 X i0 -4 (2-38)

I = 4000 seconds (2-39)
sp
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CHAPTER III

LINEAR GUIDANCE

3. 1 Summary of Chapter III

The guidance problem for continuous-thrust vehicles is formulated

in this chapter using perturbation techniques and the theory of optimum

control° A reference trajectory which satisfies mission requirements

is assumed to exist and its associated control program is known° The

consequences of allowing the reference trajectory to be an optimal tra-

jectory are examined° Linearized equations of state are solved to-

gether with their adjoint set to produce a state transition equation

applicable for small perturbations around the reference trajectory°

The state transition equation is then shown to be suitable as a guidance

equation° Solutions for the guidance equation are derived for fixed-

time-of-arrival (FTA) guidance° Variable-time-.of-arrival (VTA) guid-

ance is solved for certain restricted cases._

3o 2 General Remarks

In terms of the discussion in Chapter If, the ensuing derivation of

linear guidance may be characterized as a method of minimizing the

acceleration integral.° J_ between the present position and the target

position° For this purpose it is convenient to abandon temporarily the

engineering aspects of low-thrust transfers and to consider the prob-

lem in terms of the calculus of variations and the theory of optimum

control°

The guidance schemes suggested for interplanetary vehicles fol-

lowing ballistic trajectories usually require that midcourse corrections

state transition equation: An equation which expresses the state of the
vehicle at any given time in terms of i) the state at any other time and
2) the control existing between the two times°

guidance equation: An equation, possessing a solution which satisfies
the mission requirements for the spacecrafto The solution of a guid-
ance equation is often termed the "control law" or "control program"
for the physical guidance system°
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minimize, subject to one or more constraints, the position and veloc-

ity variations at the destination point.

The characteristics of a continuous-thrust vehicle permit a guid-

ance scheme which will null the position and velocity variations at the

destination, provided guidance is begun sufficiently early in the trans-

fer. For all practical vehicles, if guidance is not initiated early in the

transfer the low-thrust vehicle will arrive at some point, beyond which

insufficient power is available to complete the mission. The vehicle

is then said to be "in extremis". This boundary may be visualized as

a conical surface surrounding the reference trajectory with its apex

at the target point. The "distance" in phase space from the trajectory

to the surface depends upon the excess power allowed for guidance.

The problem of determining the optimum power and propellant allow-

ance for guidance is not studied in this report; however, the techniques

of this chapter are readily applicable to such-investigations and are

recommended as,a tool for future work. In this chapter it is assumed

that the reserve power is adequate for satisfying the solution to the

guidance equation.

3. 3 Formulation of the Problem

The basis for the subsequent analysis is that a vehicle is in transit

between two planets. The control program in use corresponds to some

known reference trajectory. Measurement of vehicle state indicates

that the vehicle is off the reference trajectory by some small amount.

The first problem of interest asks the question: "What is the

effect of the state variation at the time of the measurement on the ve-

hicle state at any future time? " The next obvious question is: "What

is the new control program which will cause the vehicle to satisfy

mission requirements?" The third is: "If there is more than one con-

trol program available, what criterion should be used for selecting one

of them ? "

The third question may be disposed of immediately. The thesis

is concerned with propellant-optimal guidance. Therefore the choice

between controls is on the basis of minimum propellant consumption.

From Chapter II, a criterion which satisfies this objective is the
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acceleration integral° There may be other criteria which are equally

as good, however J was chosen because it is easy to manipulate and is

easily interpreted in the physical problem°

The second question requires that the mission be defined. For

this purpose it is sufficient to require that the final position and veloc-

ity of the vehicle have certain well defined values°

Depending upon the particular mission_ the above guidance object-

ives may be satisfied at the preplanned arrival time (FTA guidance)

or at some time different from the planned time but consistent with the

mission (VTA guidance). The FTA problem is readily solved by the

linear methods of this chapter° The VTA propellant-optimal problem

is considerably more difficult° A method of obtaining restricted solu-

tions by linear methods is presented and discussed.

3.4 Selection of State Variables

The differential equations of motion for celestial bodies admit six

constants of integration. The selection of the six quantities to repre-

sent this motion is to some extent arbitrary° To be consistent with

the definition of mission requirements in this investigation_ and be-

cause they are convenient_ the three components of position and the

three components of velocity are chosen,. The convenience is due to

their facility for visualization and their relative facility for physical

measurement°

Since the conservation of propellant is important, an additional

differential equation describing the mass change due to propellant flow

must be included for certain cases° Thus seven independent_ but

coupled, variables are sufficient to describe the state of the vehicle

at any time. The state will be subsequently written as a vector which

has components of position_ velocity and mass.

(3-i)

The second order differential equations of motion will be rewritten as

first order equations to conform to the above definition of state.
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For this thesis, only central force fields are considered° It is

subsequently shown that extension to more general gravitational fields

does not invalidate the theory but does introduce computational com-

plexities which serve only to obscure the physical concept if introduced

prematurely.

With this introduction the differential equations of state are now

presented. A nonrotating frame with its origin at %hecentral body is
assumed.

s -- g (s, a) (3-2)

where

g=,

V

%r+a
r

gm (m,a)

> (3 -3)

and where a is the thrust acceleration, subsequently called the control

vector, _ is the gravitation constant for the central body, and gm(m,a)

is the mass rate equation for the particular vehicle under considera-

tion. From Chapter II

2 2

gm(m,a)_ a m (VSI) (3-4)
2p

gm(m,a) =_ am (CSI) (3-5)
C

Throughout the report the variable m is a normalized masse that is

m ° = i. This obviates the necessity of selecting a value for total ve-

hicle mass. The power and the propellant flow are likewise normalized

variables. That is

Exhaust power
P = initial mass (3 -6)

= propellant flow rate (3-7)
initial mass
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3. 5 Linearization of the Equation of State

The assumptions of a known reference trajectory, known control

program and of small deviations from the reference trajectory permit

the application of linear perturbation theory. Thus

a_g a_
6_- 5s+-- 5a (3-8)

8s 8a

From equation (3-8) the matrices A and B are defined.

ag
A - =

0s

B _

ag

0a

where

m

03

-G

O T

O 3

= 13

0gin_

8a

13 o

0 3 O

O T ag m

_m _

8
G-

8r

(3 -9)

(3-10)

(3-11)

G = ___a_
5

r

8g m

(r 21 - 3

2
a m

0m p

r rT)

(VSI)

(3-12)

(3-13)

8gm a
- (CSI)

am c
(3-14)

8g m m 2 a T

8a p

T
Ogm m a

8a c a

(vsi)

(CSI)

(3-15)

(3- 15a)
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The matrix G is a symmetric matrix of gravitational gradients° The

extension to a general gravitational field does not change this property 31

However, numerical integration in such a field requires an ephemeris

for the disturbing bodies. This is a computational problem and does

not affect the theory.

Equations (3-8) through (3-15a)treat the variations in state velocity

as functions of the variations in state and variations in the control vec-

tor, a. It is often desirable to study the effects of variations in per-

formance parameters such as power, exhaust velocity, propellant flow,

etc. For this purpose one may rewrite the vector a and the propellant

flow equation in terms of the appropriate parameters. New matrices

A and B will be formed for this purpose. These cases are derived in

Appendix C since they do not contribute to the discussion of guidance.

However, occasionally in the guidance problem it is desirable to work

with the thrust, f, as the control instead of a. The theory subsequently

presented is applicable to this formulation also. For the present,

however, the form

5s = ASs + BSa (3-16)

is considered to be the fundamental formulation for the guidance prob-

lem.

With the perturbed equations of state, as defined by (3-16) , and

using the adjoint method, it is possible to derive a state transition equa-

tion.

3.6 Method of Adjoints

One description for the method of adjoints is obtained by consider-

ing a set of equations related to (3- 16) by the matrix equation

A---- ._A (3-17)

Equation (3-17) , with arbitrary boundary conditions, is said to be ad-

joint to (3-16) and the elements of J_. are the adjoint variables. If equa-

tion (3- 16) is premultiplied by J_- , (3- 17) post-multiplied by 5s_ and the

resulting equations are added, then one obtains

d
dt(.A_Ss) = J_BS_a" (3-18)
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Along a given reference trajectory, i.e. 6a = O, equation (3-18) has the

solution

A6s_ -- constant vector (3-19)

If (3-17) is integrated along the trajectory, subject to suitable boundary

conditions, then__ is a known function of time and the state variation

at any time may be determined from the state variation at any other

time, provided the reference control program is used.

The adjoint method may be described as the process of introducing

a set of known auxiliary variables, _ , which satisfy (3-17) and which

transform the state variation at a given time into the state variation at

any other time, provided a forcing function does not exist°

A scalar approach to adjoint equations and other examples of their

application are presented in Appendix B.

A useful system of equations closely related to the adjoint set is a

set often called the fundamental set or fundamental solution. It satis-

fies the relation

Combining (3-20) and (3-17) by the appropriate pre-and post-multiplica-

tion, adding and integrating, yields the first integral

= constant matrixA (3-21)

If the boundary conditions are chosen such that

__(tf) = I (3-22)

(0) = I (3-23)

then ]_ _) = j_(0) = _)(tf) (3-24)

This relationship is useful in later discussions,

3.7 The State Transition Equation

If equation (3-18) is integrated between the times t 1 and t2, the

result is

t2

_2 6s2 = -A'I 6Sl + f y_B6adt (3-25)
t I
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Then, provided "/_2 is nonsingular
t 2

8s2 = j___l J_l 8Sl + ___1 f _.B 8adt (3-26)

t 1

A proof is presented in Appendix C that _-I is not singular.

-I
The product J_'i _j is called the state transition matrix and is

denoted by Tij, where i and j represent any two times. Equation (3-26)

is called the state transition equation. It transforms the state varia-

tion at t I and the control perturbation between t I and t 2 into the state

variation at t 2.

There are three useful applications of the state transition equation:

I) It may be used as a tool for studying the sensitivity of the

trajectory to perturbations in launch conditions and to anoma-
i0

lies in engine performance. Friedlander has performed

some investigations in this area. This application is not

pursued further in this report except for derivation of appli-

cable formulations in Appendix C.

2) If engine performance is measured by an accelerometer or

other device which can be related to the state equations, then

the state transition equation may be used in the navigation of

a spacecraft by relating the measured engine performance to

the state of the vehicle. This application is discussed in

Chapter IV.

3) The most important application of equation (3-26) is its use

in guidance. If, in (3-26) , t 2 is considered as the final time,

then the state and control errors occuring along the trajectory,

may be related to the final state variation. Since the mission

objective may be defined by the final position and velocity vec-

tors, (3-26) meets the requirements for a guidance equation

provided that, for any state variation 8s t it is possible to find

a solution a + 8a which will cause the vehicle to match the

physicalboundary conditions at the terminal point. For this

application the terminology "guidance equation" is preferable

to "state transition equation" and will be used to define the
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equation when t2 is the final time and the boundary conditions

on the adjoint variables are chosen as ]__(tf)= I. Thus the

guidance equation is

tf

5s_f = ,A_t 5st + f __B 5_a dt
t

(3-27)

where the initial time t is any time between the launch time

and final time, at which a new control program is desired.

The integrand in (3-26) and (3-27) is observed to be quite simple

when the matrices are partitioned and expanded. For the control vec-

tot a

-Aii Ai2 O I

i A22 0

O T O T A33

(3 -27a)

Using (3-i0) and expanding

where J_

matrices.

J_.12

_.B = J_22

A33

33 is a scalar and the remaining

(3 -27b)

ag m

aa

J__'s are three by three

The vectors are three component null vectors.

3. 8 Solution of the FTA Guidance Problem

The arguments presented in this section are equally valid whether

the desired solution is the acceleration program _a+ 5a or a thrust pro-

gramf + 5f. A discussion of the requirements for and the consequences

of interchanging control vectors is presented in Appendix C. Since the

propellant expenditure is so easily written in terms of the acceleration

integral, especially for VSI vehicles, it is computationally convenient

to work with a as the control° If a is used in solving the guidance prob-

lem, the set of adjoint functions, _, may be reduced immediately from

a seven by seven matrix to a six by six matrix since the equations of

motion, (3-3), do not contain mass explicitly and the "mission" is to
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satisfy terminal conditions on the equations of motion. However, when

working with the CSI vehicle it is usually more convenient to use the

thrust, f. Acceleration is used for both vehicles in this report in order

to be consistent. Since thrust and acceleration are related through

mass, the equations of motion using thrust as a control must contain

the state variable, m. For this reason the adjoint set cannot be re-

duced a priori to a six by six matrix. In recognition of this fact and

since both control vectors are useful, the J_ matrix is always con-

sidered to be a seven by seven matrix; with the understanding that if

a is the control, certain elements are identically zero. This does not

present any problem in manipulation and need not be considered fur-

ther except when J_. and B are to be evaluated numerically. In the

subsequent discussion, however, a reduced adjoint set is introduced

and is denoted by ___*. This reduction is not associated with the dif-

ference between acceleration and thrust formulations. Both a _/_ ma-

trix and a J_ * matrix exist for each contro] vector.

From equation (3-27) it is clear that if a state variation exists at

time t, then in the absence of control changes, a variation in final

state will occur which is given by

5sf = _'t 5st (3-28)

The guidance criterion is that the final position and velocity must satisfy

mission requirements. Presumably the reference trajectory satisfies

these requirements. Thus the position and velocity variations from the

reference must be zero at the final time if FTA guidance is used.

Stated mathematically, it is required that

6 -f=t ;-m

where 5mf is a small but unknown variation in final mass.

the value of 5mf, it is of no immediate concern.

convenient to drop the 5mf and define the "miss"

arises from the state variation at time t as

At 6st-

(3 -29)

Whatever

To reflect this it is

at the target which

(3-30)
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where _ is a six component vector of position and velocity variations

and __':'is a six by seven matrix obtained by deleting the seventh row

of __ . Clearly 5mr can be obtained_ once the corrected control is

known, from

tf

5mf =]_ T 5s t + f 1_ T B 5a dt (3-31)-- 7t -- --7 --
t

T
where A 7 denotes the deleted seventh row of the adjoint set.

Since the state error 5s_tis assumed to be small, so that linear

theory is valid, it follows that a small correction to the reference con-

trol program will be sufficient to null the miss vector in the remaining

flight time. The foregoing is true provided the vehicle has sufficient

thrust. That is, it is not "in extremis" Assume it is not. Then the

miss may be reduced at a rate such that

= Jk.* B 5a (3-32)

or by integrating, such that

tf

O- _--t = / J_*B 5adt (3-33)
t

That the control 5a is not unique, except for a _--t which requires

maximum thrust continuously, is evidenced by the fact that for ballistic

guidance, ideally, only two corrections are needed to null position and

velocity error; a midcourse correction to correct position and atermi-

nal correction for velocity. Thus for continuous thrusting vehicles an

infinity of solutions exists. The criterion for selecting a unique con-

trol has already been given; the acceleration integral J or J* must be

minimum. Mathematically_ the problem for VSI vehicles may be

stated: It is required that

tf

{0} = -t+ft

and that J is a minimum, where

/___ 5a dt (3-34)

tf

J:f
t

(a + 5a) T (a + 5a) dt
,2

(3 -35)
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O

For convenience define the optimal control, a

O
a = a+ 6a (3-36)

For a VSI vehicle with no uuh_l_lhL_ on a the set (o-o_) _,u (3-35)

can be solved by a direct application of the calculus of variations. The

vector space around the reference trajectory is explicitly assumed to

be flat to first order. Consequently __ and B are invariant between

neighboring trajectories. Thus

 o+o t+f a a T JK* a °
5 -- -- dt +_ __+ f B(_ -_a) dt

t 2 t
=0

(3-37)

where _ is a vector of constant Lagrange multipliers and the subscript

on it is dropped. Expanding (3-37) one obtains

T
a o = _ T j__, B (3-38)

The vector = is eliminated with help of equation (3-33).

[ : i- f A':" B B A _:" _ +_a d t1 -t

7r = M -1 (77 -_)

where

Thus

(3 -39)

(3 -40)

tf

M = f ]k* B B T j__,T dt (3-41)
t

tf

?7 = f _.* Badt (3-42)
t

o B T 1a - A*T M - (__-_)

The solution (3-43) is valid provided the reference trajectory is suffi-

ciently close to an optimal that 6a is small. It is unique provided M is

not singular. A proof is presented in Appendix C for the existence of
-1

M

(3 -43)

A physical interpretation of the quantities M and _, defined by

(3-41) and (3-42), is valuable in understanding the solution. First ob-

serve that __ has two interpretations. From (3-30), __ is the miss
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arising from a state variation, 6st, when the reference control is used.

From (3-33), - _ may be interpreted as the miss that results from a

control variation, 5a, occuring after time t but with 6s t = O. Similarly

from (3-42), - _ is interpreted as the particular miss that arises if

5a = -a__;that is, coast is initiated. Ifthe miss, _, due to a state varia-

tion and the miss, - 2, due to initiating coast are such that (_-_) = 0,

the optimal control is the null vector. Although such a solution will

generally violate linearity assumptions_ it will indeed result in a mini-

mum J, namely zero.

If the product _. * B is interpreted as the sensitivity of the final

miss to a unit impulse in each component of the control at time t_ then

M may be considered as a weighted total sensitivity of the miss to a

unit control applied continuously between t and tfo In a physical sense

the procedure computes the vector sum of the miss using the reference

control vector and the miss using a null control vector; then selects

the eontrol at each point according to the sensitivity of the miss at that

point.

It is interesting to note the solution which results if, instead of J,

the minimization criterion is

tf 6aT 5a

S = f -- -- dt (3-44)
t 2

Proceeding as in equations (3-37) through (3-41) but solving for 5a, the

result is

o _ B T T 1a = a+ 5a = a A* M- _ (3-45)

Comparing (3-45) with (3-43) it is observed that for _a = B T j_..,,..T M-1U_

the results are the same. The preceding expression for a satisfies

(3-42) therefore for small variations around the reference trajectory

the two methods result in the same control° This is only true for VSI

trajectories, however.

Before proceeding to consider CSI solutions it is desirable to

examine the consequences of the reference trajectory being optimal

for the initial launch point. If the reference is initially optimal but a
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state variation occurs such that a miss, _ will result from use of the
reference control program, the reference control ceases to be an

optimum because the boundary conditions are not satisfied. Also the

particular formulation used for the problem does not result in a singu-

lar M matrix as is often the case. Therefore, in this study, the only

consequence of using an optimal reference is the assurance that 6a

will not violate line arity assumptions°

A new approach is now presented which can be used for both VSI

and CSl control. To illustrate this method the VSI problem is solved

again but with a constraint.

Assume that thrust is not to exceed an amount f . Therefore
O

thrust acceleration cannot exceed fo/mm- o" To be consistent with the

normalized mass variable_ m, used in this report denote fo/mo as the

initial acceleration limit a o. The constraint may now be written as

a

a< o (3-46)
-- m

and using Pontryagin's principle (Appendix D),Following Kalman 16

form the scalar Hamiltonian_ H

o T
a

o
a

H -- -- + v T _ (3-47)
2

The theory states that if the cost0f_a°)2/2)_s to be a minimum, then for

each point along the trajectory H must be a minimum_ where _ is an

unknown vector, often called the costat% which satisfies the adjoint

relationship, and _ is the state velocity. The linearization in this chap-

ter permits considerable simplification. Using (3-32)_ _ is interpreted

as a variable representing the velocity of the final state. The variable

_t is the initial condition for __ and is a function of the lower limit of

integration, t. _--t is evaluated from the vehicle states 5s t , using (3-30).

Because _ is a variable in state space at the final point, v is a constant

vector. In particular it is the final value of the general time varying

costate vector.

Therefore, using (3-36)

-- .A.* B (a ° - a) (3-48)
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Further
T

0 0
a a

H --- -- +_T ]K* B (a° - a)
2

T
0 0

a a

H = - _,T ._, Ba +- -- + T .A_* Ba °

(3 -49)

(3-5o)

(3-50) is a constant independent of a °, thus H is aThe first term in

minimum when the sum of the last two terms_ HI, is a minimum.

The control a ° is to be determined such that H is a minimum.
-- 1

T
O O

a a

minimize H 1 = + T .A_* Ba °
2

(3-51)

a

subject to a < o (3-46)
-- In

T
now let _T _A_* B = _q (3-52)

Since q and a ° are both three component vectors, one may be obtained

from the other by a scalar multiplication and a rotation. Thus

O
a = 7 C q (3-53)

where 7 is a positive scalar and C a coordinate rotation° Inserting

(3-53) into (3-51)

2 2
T

H1 - 7 q + 7q C q (3-54)
2

any value of 7_ H I is minimum if qT Cq has maximum magnitudeFor

and is negative. But

TIq_cql < I.I Icql

where equality holds for C = I. It is apparent that H 1 is a minimum

only if C = - I and (7 2/2 - 7) is a minimum.

HI= - q (3-56)
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Thus when constraint (3-46) is applied, HI is a minimum if and only if

a q a
0 0 -- 0

a - q > (3-57)

m q m

or

_' a
o o

a : - q q_< (3-58)

= rain i;

m

(3 -59)

a° = - 7 BT _.,,T v (3-60)

Comparing this solution with the variational solution, equation (3-38),

one observes that except for the constraint T the solutions are identical

and v = 7r. 7 may be interpreted as a switching function which carries

the thrust restriction (3-46).

Having gained confidence in the Hamiltonian, now apply the method

to the CSI transfer for which the classical approach is degenerate. The

appropriate cost is tf a a °

j, = f o dt,. (2-19)
t 2m

Minimize o
a a

H - o + v T _."," B (a ° - a) (3-61)
2m

a
o

subject to a <
m

Again __Tjk* Ba is a constant, therefore

(3-46)

minimize H 1

a
o

2m

o T o
a +q a (3 -62)

Where q is defined as before.

The previous argument holds, to yield

O
a =-Tq (3-63)

and

H (% )1 = _ 2m q q
(3 -64)

4O



In this case H1 is a minimum if and only if

o BT , Ta =-7 7k v (3-65)

where
I

a
o

7=0 q<
2m

a a
o o

7- q>--

mq 2m

(3-66)

For the case q = ao/2m, Tis actually indeterminate. However this is

not an important consideration for this thesis since equality holds only

for infinitesimal time periods.

Equations (3-65) and (3-66) yield the "bang-bang" solution char-

acteristic of optimal trajectories for which the cost is a linear function

of the control. Again, the solution is strictly valid only for perturba-

tions around a reference trajectory. In order to complete the CSI solu-

tion it is necessary to evaluate the constant vector _. The evaluation

is more difficult in the CSI case than for VSI because the control pro-

gram is discontinuous° v is evaluated by first applying the boundary

conditions (3-34) and using (3-36).

tf

O = __+ f __* B (a ° - a) dt (3-67)
t

Assume that a ° and a differ only because their respective values of Y

and v are different. The assumption merely implies that __* B is the

same for neighboring trajectories. With this assumption rewrite

(3-65) as

0 0 /yOa = - 7 BTA- *T (3-68)

for the corrected control program, and let

a = - Y BT_-*T v (3-69)

represent the reference control program. Then (3-67) becomes

tf

O= __- f A* B BTj__ *T(Y °£° _ y__) dt
t

(3-70)
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which may be rewritten as

tf

t
j__* B B T j_.,T h(?,£) dt (3-71)

The increment A (y _V) represents the difference in the control pro-

gram between the reference trajectory and the corrected trajectory.

Since _ is a function of v, a solution may be obtained by formally

differentiating and solving (3-72) for 5. 9.

= O f _A_, B B T _,,,T _vd t ___

_ t
(3-72)

The functiony is discontinuous at switch points, which occur at times

t k in the interval tf - t. Consequently the integral (.3.-72) must be

separated into regions of coasting and thrusting and Leibniz'_ rule
¢

used for the differentiation. A term of the form

tk 0tk+ j_.* B B T 2__*T_ _v _ _v results for each switch point, where
av

plus is for switch off and minus is for switch on.

The term a T/8_v is evaluated in the continuous regions from the

definitions (3-52) and (3-66). The term atk/a_is evaluated by con-

sidering

q = q (t,_v) (3-73)

From (3-66)

q (tk, v)

a
o

2m

(3 -74)

Differentiating (3-74) with respect to v, one obtains

aq atk aq
+ - 0

at av ap

aq

at k a v

aq
a_v gi-

(3-75)

(3 -76)
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The derivatives of T and q are evaluated in Chapter VI when it becomes

necessary to specify the explicit form for computation.

Solving for &v, one obtains
-i

&_v = M* _ (3-77)

where

tf Ot k

M*= tfA*B +_v OZldt +t'J' BBT__ *T y _j'Itk 8u

- (3 -78)
The constant vector u ° is obtained from

o (3 -79)

where

_y = - M-1U_ (3-80)

and

tf

M : f y A* B B T A *T dt
t

tf

U_U_:f_A_* Badt
t

(3 -81)

(3-82)

0
The values for

O .
puted _ in q.

are obtained from equation (3-66) by using the com-

With all quantities defined in the preceding equations, the corrected

control program is given by

o o BTA,T(M-I M,-I )a. = "y T/ - __ (3-83)

3. 9 Application of the Guidance Theory

In order to use the theory of section 3. 8 for the guidance of space

vehicles it is necessary to compute the quantities in equation (3-43)

for VSI guidance or in equation (3-83) for CSI guidance. Since (3-43)

may be regarded as a special case of (3-83), only the latter is discussed.

If the reference trajectory is known, then the elements of the ma-

trices B, .A., M, and M* and the components of the vector U__can be
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computed for any point along the trajectory° Whether these quantities

are precomputed and stored prior to launch or are computed on board

as needed will be determined by the state of computer technology when

the vehicle is designed. This problem is not relevant to the present
discussion. In either case, the first step in computing the corrected

control is to establish that a state variation_ 6st_ exists. Methods for
processing measurement data for this purpose are discussed in Chap-
ter IV. Then the final state error is determined from (3-30).

= _'t 6st (3-30)

The vector o is computed from the known quantities and the final state

error using (3-77) through (3-82)°

o = M_,-I_ _ M-1 __ (3-84)

0 0
From (3-52) and (3-66) q and _ may be computed.

o I BT_,..,T o I (3-52)q =

0 0 0

7 = 0 q < 2m (3-66)
1 a a

o o o o

7 - o q >
mq 2m

Then from (3-68)

o o __.T o (3-68)a = - T BT v

This result may be programmed into the vehicle control system to

implement FTA guidance°

3. i0 Discussion of the VTA Guidance Problem

In Chapter II it is shown that in field-free space, the minimum

acceleration integral for VSI vehicles is J = 6L2/T 3. A VTA guidance

scheme which minimizes J for a given L in field-free space will there-

fore select an infinite transfer time unless constrained. If the planets

were all in coplanar_ circular orbits and the reference trajectory lay

in this plane, a similar result would be obtained in the solar system.

Because of the inclination and ellipticity of planetary orbits, local min-

ima of J will occur which depend upon p_anet and _spacecraft
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orientation. A complete relaxation of the time constraint, tf, in the

theory of sections 3.8 and 3.9 would require that the new arrival time

correspond at least to a local minimum of J. Therefore, unless tf is

approximately equal to this propellant-optimal arrival time, linear

theory cannot be used to obtain propellant-optimal VTA guidance.

However, it is possible to restrict the change in arrival time_ use

linear theory and obtain useful solutions. A case where this is impor-

tant occurs for a vehicle "in extremis". That is, insufficient power

(or thrust) is available to null __ at time tf. The result obtained is

dependent upon the method of restricting:At and upon any simplifying

assumptions. Consider the following example which is based upon the

as sumptions:

I) The target point relative to the planet center is unchanged.

2) The final velocity relative to the target point is unchanged.

3) The thrust acceleration af = a (tf) is constant over the interval.

The motion and position of the target point at the time tf + At are

=_ _ At (3-85)r_T (tf+ At) r T (tf) + Vp

_(tf+ At) = v T __(tf)= v + VR + g'T At_vT --p
(3 -86)

where v and v R are the planetary motion and the desired relative--p

velocity, respectively, and gT is the solar gravity at the planetary

radius.

For the mission to be accomplished, the vehicle position and veloc-

ity must equal r T and VT at time tf + At. The vehicle position and

velocity in terms of the reference trajectory are

r__(tf + At) = r (tf) + 6£(tf) + v(tf)

v (tf+ At) = v (tf) + 6v(tf)

2

At+af (%t) + 6v(tf) At

(3-87)

+ af (At) +_T At (3-88)

Solving equations (3-85) through (3-88) for 6_rf and 6vf one obtains
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At

5rf_ = - v R At - 5vf 2'

5vf : - _af At (3 -90) ,

For the linear approximation assume 5vf/2 << v

and (3-90)

.

may be inserted in the guidance equation.

- At --__+ fA.*BS_adt

_af" t

Defin_ a new miss vector _j'-' such that

;',_ = =

- £J v

Equations (3-89)

(3-91)

At (3-92)

Then by selecting A t such that the uncorrected final position error,

_':_ i, is a minimum_ the vehicle will attain the terminus but at the

i

i

time tf + A t and with the least departure from the actual trajectory.

The result is

T
- Va _--r

At=
2

v R

(3-93)

Equation (3-93) may be inserted into (3-92) and the optimal control

program found using the FTA procedures of sections 3. 8 and 3. 9.

If the target point is the planetary sphere of influence and the de-

sired relative velocity is zero_ obviously the above solution is invalid.

Other assumptions may be used to treat such cases. The assumptions

to be used and the criterion for restricting At may be changed to suit

the purposes of the investigator. In general, the propellant-optimal

VTA problem is not readily treated by linear methods unless additional

constraints are used. Exploring the numerous possibilities that arise

will be left for future investigations.
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CHAPTER IV

ESTIMATE OF THE STATE VECTOR

4. 1 Introduction

In this chapter a method of determining a "best estimate" of the

vehicle state vector is presented. The term "best estimate" is used

to designate the estimate for the state vector computed by processing

redundant measurement data through a statistically optimum filter°

Potter and Stern 32 have shown that all of the three commonly used

methods of processing redundant data_ namely_ maximum likelihood_

minimum error ellipsoid_ and minimizing a characteristic scalar

parameter all result in the same filter. They have shown further that

for each unbiased optimum filter_ there exists an associated biased

optimum filter which produces a smaller error ellipsoid for the esti-

mate.

Since all of the methods result in the same filter_ in this thesis

the method which presents the least mathematical complexity is used.

The method involves a slight variation of the minimum error ellipsoid

technique.

4. 2 General Remarks

To establish a corrective thrust program it is desirable to have

accurate knowledge of the state vector at the time the program is to be

initiated. It is clear that given perfect knowledge of some prior state

vector and of vehicle performance the prediction problem reduces sim-

ply to application of the state transition equation between the time for

which the state is known and the time for which the prediction is de-

sired. It is equally clear that perfect knowledge ef a process seldom

exists. Thus the problem becomes that of using existing information

An unbiased filter will produce a true value for the state vector if
all measurements are free of error_ A biased filter is biased in favor

of the a priori or prelaunch expectation of the second moment of the
state vector probability density.
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in such a way that its inaccuracies have minimum effect on the guidance
decisions.

For ballistic vehicles the determination of position at two points

along the trajectory suffices to specify the entire trajectory° Several
investigators including Battin 30 and Stern 31, have studied the effects

of using additional fixes and of selecting the geometry of individual

celestial measurements to reduce the error in the trajectory determina-

tion. The techniques developed in those studies may be extended, in

some cases without change° to the present work° The primary differ-
ence between the ballistic and continuous-thrust vehicles_ is that the

future portion of the actual continuous-thrust trajectory can never be

completely determined on the basis of its history alone. This fact is

due to the possible occurrence of random changes in the thrust vector.

Another difference, which is more easily treated_ is the first order
dependence of the trajectory upon vehicle mass. This dependence may

be handled by measuring propellant state at discrete intervals as well

as making celestial measurements°

Thus for the continuous-thrust spaceeraft_ state determination from

on-board measurements may be separated into two related problems:

i. determining the state history by suitable filtering of all meas-
urements that have been made, and

2. predicting future values of the state vector.

The second of these is dependent upon but is not uniquely determined

by the first.

The use of celestial sightings, as in the case of ballistic transfer,

is sufficient to determine the spacecraft trajectory° However such

measurements are not sufficient to specify the entire state history nor

the variational history of the control vector which contributed to the
state change. Because of this_ prediction of the state vector solely

from periodic celestial sightings and propellant measurement will be

subject to larger uncertainties than if the prediction includes meas-
urements of the control vector as well.

48



4.3 Unbiased Estimate of Present State

The term "present" ,state will be used to denote the state vector

computed without regard to a computational time lags thus_ it is the

state at the time of the most recent measurements°

The measurements which will be processed for the estimate are

i) periodic determination of position_ 2) propellant state_ and 3) con-

tinuous measurement of engine performance. It appears quite feasible

to derive a method of including raw celestial observations in the compu-

tation process without explicitly deriving the position vector. How-

ever, this would contribute nothing to the present argument and will

be left as a subject for future study. Consequently_ the computed com-

ponents of position variation will be considered as a "measurement".

Since velocity is impractical to measure directly, except near planets,

the velocity will be derived from successive position measurements.

The time of the present state estimate will be chosen as occuring

between celestial "fixes". If the state at the time of a fix is desired,

such an estimate will be a special case of the more general problem.

This approach is justified on the basis that celestial observations may

be separated by several days but current engine data is always avail-

able.

In the following development measured quantities will be denoted

by the "tilde" (~) and the estimated quantity by a carat (A).

The relation between the measurement quantities and the state may

be written as:

N Ss_ : 8_q (4-1)

where N is a k by seven deterministic matrix relating 8s to 8q._

8 s is the state to be computed

8 q is a column vector whose k components are the meas-

urement data.

The matrix N may be derived directly from the state transition

equation written between the time for which the estimate is desired_

t = t n and any previous time_ t = tf
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t n

6s : T 6s -A -1 f_ A B 8a_dt (4-2)
--l in --n i ti

where T.
in

(4-2) may be considered as a vector.

-i
=_- i _A,n_ For simplicity, the integral term in equation

tnJ_i 1 f _A.B 6_a dt= Av (4-3)

ti A i

and the transition matrix T.

tives. Thus,

as a partitioned matrix of partial deriva-
in

if only the position vector at t i is considered, one obtains

-6r__i + Ar. = -- -- 6v (4-4)
-_ Or Ov 8mJL --n --n

n

where the matrix of partial derivatives consists of the first three rows

of Tin. Equation (4-4) may be written for any number of times

t. (i : n - i, n - 2 .... )o An analogous _quation may be written fori

the propellant measurement and the results arranged in the form of
i

equation (4-1). One might expect the propellant measurement to be

less critical and less subject to error than the other measurements.

Consequently it may be necessary to include only a few measurements

of propellan% perhaps one or two_

Let us consider now the problem of finding an unbiased filter_ FO,

which minimizes the error in the state vector and satisfies the rela-

tion

6__: Fo 6__ (4-a)

If the uncertainty in the state vector is u and the error vector associat-

ed with measurement is ca then

6q = 6q +c = N 5s + Nu (4-6)

Since the true measurements and the actual state vector satisfy equa-

tion (4-i)_ then

e = Nu (4-7)
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The equation for the error ellipsoid associated with the measure-

ment vector is given by
T -i

E c -- 1 (4-8)

where

E = < e cT> (4-9)

is a k by k matrix and the brackets denote the mean value. Equations

(4-6), (4-7)_ and (4-8) may be combined to ]field

TNT 1 'T T -I
u E- Nu= (6q_ - 6s_ N T) E (6q_- - N6s) (4-i0)

If the partial derivative of equation (4-10) with respect to the compon-

ents of the state vector are set equal to zero_ one obtains:
|

BuT2 - N T E -lNu = _ 2 N T E -1 (Sq- NSs) = 0

\Osi /

The solution to equation (4-11) is the estimate_ 6sA.

6sA = (N T E -I N) -I N T E -I 5q

(4-ii)

(4-12)

Thus for the unbiased filters equation (4-12) yields:

F O = (N T E -I N) -I N T E -I (4-13)

It is not surprising that the filter of equation (4-13) is the same filter
32

derived by Potter and Stern using the method of maximum likelihood.

4.4 Biased Estimate of Present State

The proof that a biased estimate will' result in a smalle_r ellipsoid

of error will be omitted since this topic is well covered in the litera-

ture 30_31'32 In this section only the method of obtaining the biased

filter from the unbiased filter will be presented°

The optimum biased filter_ FOB_ is obtained by deleting the last

seven columns from an associated unbiased filter which is computed

using a fictitious measurement of present state° Thus the measure-

ment error vector to use for computation of the error covariance

matrix E is
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c

--6n-i1_6n_ 2

>

-6s_

(4-14)

The last seven rows of the N matrix must then be the seven by seven

identity matrix. The resulting unbiased filter F O computed from

equation (4-13) but with the last seven columns deleted defines the

optimum biased filter, FOB.

4. 5 Covariance Matrix of Measurement Error

The matrix E is extremely important in the computation of the

state estimate. Since it involves the measurement errors from both

discrete and continuous measurements_ it is worthy of closer examina-

tion.

In section 4.3 a

written in the form

subvector of the measurement vector 6qwas

6ffi: 67i_ + ar i

From equation (4-3) it is apparent that

n

A_i : [I 3 03 031 Ai -1 /
i

(4-15a)

_S 6a dt (4-15)

where 13 is the three by three identity_ 0 3 is a three by three null

matrix and 0 3 a three component null vector. Thus a measurement

of position consists of two parts: the celestial fix, 6r i, at time t = ti,

and an additional vector A r. which contains the integrated engine vari-
--i

ations from t i to t n. As a consequence_ the error vector at time t i

will also consist of two parts_

t n

-1 / ./kB E dt (4-16)c . = --_ri + [ 13 03 03 l _'i --a
--1 ti

which for simplicity will be written as
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t n

-ci :Jri + f

ti

D. c dt (4-17)
l--a

where E_r i is the error in determining position and_e a

measuring the engine quantity.

is the error in

It appears justifiable to assume that measurement errors of dif-

ferent types, i.e. position, propellant flow, acceleration, are indepen-

dent and have zero means° Further, that the position measurement

errors for two different times are independent° The assumption of a

zero mean for measurement errors does not result in a loss of gener-

ality, however it greatly simplifies the mathematics°

With the above assumptions, the E matrix includes terms of the

following form:

I) On the diagonal

t n t n

<£ c T> +< f D. e dt f cTDTdt>--ri--ri 1-a --a i
t i t i

(4-18)

2) Off the diagonal

t n t n

f Di_Eadt f E T DT dt >-a j
t i tj

(4-19)

38
Using the theory for handling random processes , the integral

terms are easily reduced to the form

t t
n n

f D i (t 1) f

t i tj

0 (tlt 2) D] ? (t 2) dt I dt 2 (4-20)

where 0 (tlt2) is a diagonal, matrix of autocorrelati0n. functions° To

proceed it is necessary to make some assumption about 0. The most

easily justified assumption is that the engine measurement errors

each contains much higher frequency components:than,doe:s the matrix

D. and each is uncorrelated except over short intervals° Thus, over
1

the period of integration the measurement errors approach a "white
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noise" distributionn With this assumption _ is reduced to a diagonal

matrix of constants representing the measurement error variance

multiplied by the Dirac delta function°

(;2. 0 1
m 5 (4-21)

$ = (2 (t2 - tl)
0 c

(Measurement of propellant flow and exhaust velocity are used as ex-

amples in (4-21)_) Designate, for simplicity

$ = _ 6(t2-tl)

where _, is a diagonal matrix of measurement variance.

(4-22)

One integration of the terms in (4-18) and (4-19) may be performed

to yield

t n

f D i _ DT dt (4-23)
t k J

where the interval k to n represents the shorter of the intervals i to n

or j to n. The E matrix formed from these elements is a symmetric

positive definite matrix.

The necessity for including engine measurements in the estimate

of state for low-thrust vehicles is made evident by equation (4-24).

Note that the measurement error vector, when position data alone is

used, would contain integrals of the actual engine variations. That is

t n

_. = c . + / D. 5adt
-i -rl 1 -

ti

(4-24)

Assuming that the engine measurement errors are much smaller than

the engine variations to be measured_ equation (4-24) would result in a

sizeable increase in the error ellipsoid. In addition, as the interval

i to n increases, the value of the celestial fix at time t i is rapidly de-

graded due to the effect of the increasing value of the integral term in

the E matrix.

54



4. 6 Estimate of Future State

As noted previously, the future state vector of a continuous-thrust

vehicle is not a deterministic function of the state history due to short

period random variations and, perhaps, long term degradation of engine

performance. If engine degradation, presumably in the form of loss of

specific impulse, does not become a factor_ the space navigator would

be justified in assuming a zero mean for engine variations. With such

an assumption a filter, biased to include a priori information of engine

statistics and a priori information on state statistics, may be construct-

ed which will produce an optimum prediction of future state°

If long term variation in engine performance is evident, the naviga-

tor is faced with the problem of extrapolating accumulated engine data

in order to make a prediction with acceptable confidence. Certainly_

sophisticated analytic techniques exist for smoothing and extrapolating

the measured engine data° However_ in this section we shall only be

concerned with using data, regardless of the manner in which they are

processed, to predict a future state. For example_ simple graphical

extrapolation of plotted data will suffice.

Two prediction techniques will be presented, i) a very simple ex-

trapolation technique for short term prediction and 2) an optimum filter

technique for long term prediction. The first method assumes the

present state has been determined by the methods of section 4o 3 or 4.4o

It uses the state transition equation and an estimate of engine perform-

ance to predict state in the near future.. The estimate is

tn+ 1

59 +4 5_ + A -i f A_B 5Aa dt (4-25)-n i = Tn+l n -n n+l
tn

where the notation t = tn+ 1 will indicate the future. This method may

be characterized as an extrapolation of filtered data and may be quickly

computed.

The second method uses the optimum filter of section 4.3 but in

this case a representative subvector of the measurement vector is
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t n tn+ 1

6qi = 6r i + f D. 6a dt + f D. 6_ at-- -- 1 -- 1 --

t i tn

(4-26)

.th
the error vector associated with the i position measurement is

tn tn+ 1

_. = e . + / D i c a at + / D._ dt--i --rl -- i a
t. t
1 n

(4-27)

where 6aA and _ represent the extrapolation of engine performance and
-- --a

the error in that extrapolation, respectively.

The optimum biased filter of section 4o 4 may be used without al-

teration; however, the covariance matrix of measurement error will be

more difficult to compute.

This second method may be characterized as a filtering of extrap-

olated data and should be used for long range prediction. The proof

by Potter and Stern 32 shows this second method to be optimum and

intuitively it appears to be of correct form, By comparing expressions

for the covariance matrix of uncertainty Jn state at time tn+ 1 for the

two methods.

U = < u uT> (4-28)

it is apparent that both methods result in the same error ellipsoid as

tn+ 1 approaches t n. For both methods:

-i
U = (N T E -I N)

tn+ 1--_ t n

(4-29)

thus the assertion that the simple technique will be quite adequate for

short term predictions appears justified.
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CHAPTER V

TRAJE CTORY DETE RMINATION

5. 1 Summary of Chapter V

In this chapter the problem of finding a trajectory which satisfies

the end condition, the propulsion restriction and which minimizes pro-

pellant consumption is discussed and illustrated with the VSI trajectory.

The problem is formulated using the classical methods of the calculus

of variations° A new interpretation is presented for the results_ which

are shown to yield the same control program as the Pontryagin maxi-

mum principle. The guidance theory of Chapter III is therefore sug-

gested as a trajectory computation scheme° Finally_ qualitative as-

pects of low-thrust optimal trajectories are discussed.
b

5. 2 General Remarks

A vast amount of effort has been directed in recent years toward

the study of optimization problems. Such problems belong to the cal-

culus of variations which owes its early development to such men as

Lagrange, Euler, Hamilton and Gauss° The introduction of high speed

computers has been the primary impetus in bringing renewed interest,

after years of limited application, to variational techniques° Specifi-

cally, much recent literature treats the characteristics of_ the neces-

sary conditions for_ and methods of computing solutions to optimization

problems. Variational techniques are used almost exclusively as the

primary mathematical tool. The contributions listed as references in

this report constitute only a minor fraction of the published works.

These efforts have resulted in a large body of theory now called opti-

mal control theory which has application to virtually all optimization

problems dealing with dynamical systems°

A fundamental precept of the theory is that along optimal trajec-.

tortes, admissible first order variations in an unconstrained control

program cannot produce a first order effect in the cost function° For
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unconstrained controls_ admissible control variations are those which

do not cause a first order change in boundary conditions. This princi-

ple is derived directly from basic equations _and is part of the definition

oi' optimality in the calculus of varlations. A mathematical consequence

of this principle is that certain arrays of coefficients, when evaluated

along the optimal trajectory_ will have a zero determinant. When work-

ing with the practical problem of computing trajectories, or of guidance

around the optimal trajectory., the inverse of a matrix defined by such

arrays usually appears in the equations. Obviously the occurrence of

a singularity complicates the procedure of finding an optimal control

program and its associated optimal trajectory° It has led to investiga-
tion of second variations of the cost and the trajectory 39, to various

12
schemes for finding near.-optimal controls _ and to optimal controls
which only approach the desired boundary conditions 14.

The implication of these investigations is disturbing from a physi-

cal viewpoint since they imply that an otherwise well behaved_ smoothly

operating system_ in some sense becomes uncontrollable along an
optimal reference trajectory. In reality, singularities are more often

mathematical than physical. A fu_the_:oimplication is, that although a

control can be found which approaches the optimal control to within a

small increment_ it is orders of magnitude more difficult to find the

exact optimal control..

The physical world does not usually behave in such an unruly man-

ner, thus the answer must be: I) the mathematics have an interpreta-

tion that has been overlooked or' 2) the problems may be approached

from a different viewpoint°

Actually_ both i) and 2) have validity. To support this contention_

the problem of generating an optimal reference trajectory for use in

testing the guidance theory of Chapter III is considered as an example.
To be sure, a conservative field such as the gravitational field is a

well behaved space in which to work. Undoubtedly, problems which

deal with dissipative forces or higher order nonlinearities may present
difficulties not readily resolved by the method of this chapter. Hope-

fully, however_ it will provide an approach that can serve as a starting

point for more difficult problems.
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5.3 The Calculus of Variations Problem

In Chapter II it is shown that minimizing the acceleration integral

is equivalent to minimizing the propellant consumption for a low-thrust

vehicle. Thus the mass rate equation is superfluous for VSI trajecto _--

ties and it is necessary only to work with the equations of motion and

For the VSI vehicle the problem can be for-the acceleration integral°

mulated as: Given

satisfy

subject to

r_ (0) =-r_o (5-I)

V (0) = v o (5-2)

r(tf) : _rf (5-3)

v(tf) = vf (5-4)

r : v (5-5)

_ u (5-6)- 3 £+a
F

and minimize

J _

tf

I J a 2 dt (5.-7)
2 0

A scalar functional,_ F, will now be formed using the well known :, '_,

Lagrange multiplier technique.

2

F : _T Or- v_ +_T_ i (v+ u a-r - - -v - -_ r- a) +-- (5-8)
r 2

where A and
--r --v

Euler variables).

are time varying Lagrange multiplier vectors (or

The remaining variables have the same meanings

as in previous chapters.

Since the bracketed terms are zero_ clearly

tf

J= J' Fdt
0

(5-9)
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Integrating by parts and setting the first variation of the integral equal

to zero, one obtains

tf

5 f F dt= 0 = [ xT 5r +xT 6v ]
0 -r - -v --

tf

0

tf

0

+ _rT) 5v (5-10)

+ (a T- _:)5a] dt

Applying the fixed end conditlons and setting the coefficients of the

state and control variations equa] to zero gives the Euler equations and

the boundary conditions_

k i T tx T
o ' -- r--r = . (,

A

tf

(5-11)

0

= ? (5- 12)

= .? (5- 13)

a : X (5-14)
-- --V

Notice that the Euler variables_ (5-1 1), satisfy the adjolnt relationship

to the variational equations of motion and that the boundary conditions

are unknown° Equations (5-12) and (5-13) are written to emphasize

the unknown boundary conditions°

Clearly, if the correct initial value of the six component Euler

vector were known_ the entire system of state and Euler equations

could be integrated simultaneously from t = 0 to t = tf. The unique

reference trajectory and its associated optimal control program would

then be known° A procedure for finding the initial value is discussed

in later sections°
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A very annoying fact about the preceding approach to finding ex-

tremals in the calculus of variations is the necessity of searching for a

formulation of the problem which gives a meaningful result° Minimizing

the cost function J is known to be equivalent to minimizing propellant

consumption, thus one differential equation of state was eliminated_ in

particular, the differential equation describing the rate of change of the

optimized quantity, mass. A simple answer resulted. It should not be

necessary to search for an equivalent formulation for a problem if the

set of differential equations describing the system is complete_ linearly

independent and reasonably well behaved° Two different Mayer formula-

tions of the VSI problem help illustrate this argument.

For the first problem, minimize propellant consumption instead of

the acceleration integral. Equations (5-i) through (5-6) hold, but the

mass rate equation must be reintroduced°
a2m2

m -

and that

Thus it is required that

2p
(5-15)

tf

= f - m dt = m - mf (5-16)
mp 0 o

be a minimum where m is propellant mass° For fixed initial mass
P

the first variation of m equals the variation of - mf° Forming theP
functional F

2 2

F = kT (r- - v) + _tT (v-+--3u r - a) + (m-- + _a 11, ) _ m
--r -- - -v - r km 2p (5-17)

then integrating by parts and setting the first variation of the integral

equal to zero as before, yields

tf

[ 1F dt = 0 = kT 5r + kT 5v+ - 1) 5m
--r -- -v - (Am 0

tf

- f [(_T-' AT G) 5r0 --r --v --

2
o

+(kT+kT) 5v+ -k a m ) 5m
--v --r -- (Am m p

(5-18)

+(k_vT-kmm 2 _aT)5a ] dt

61



In this case the Euler variables for position and velocity again satisfy

equations (5-1 i) through (5-13). In addition

(Am -i) = v (5-19)
0

= 1 (5-20)
mf

2
_ k a m - 0 (5-21)

m m
P

--v (5-22)_a- 2
m

m
P

Equation (5-22) appears to differ from (5-14) by a scalar function of

time. Since the control program is unique (5-22) must reduce to

(5-14). By manipulating (5-15) and (5-22) it is possible to obtain

m

m

2 m
m

(5-23)

which has the solution

m

constant

2
rn

(5-24)

Applying the boundary condition (5-20)

2
mf

-
m 2

m

(5-25)

Substituting into (5-22)
P

_a- 2
mf

--V
(5-26)
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Equation (5-26) differs from (5-14) only by a constant which is easily

absorbed in the unknown boundary conditions on A . The Euler variable
--V

Am appears to have been superfluous.

Consider a slightly different formulation which is just as valid° Use

thrust as the control then

r = v to-_

u f
v - r + - (5-27)- 3 -- m

r

f2
m -

2p

tf

minimize m = f - m dt
P 0

(5-28)

(5-29)

Proceeding as before_ the functional F and its first variation are

F = AT (r - v) + AT (v+ u f f2-r - - -v - ---5 r---) +A (m+--)-m
r - m m 2p

tf tf tf

os d :O:I ] -S[( /°'-0 0 0

T s_
+( )By+ (Am- X

-v m 2 )Sm

+

A T A

(--Vm Pm f__T)5f ]dt__

(5-30)

(5-31)

The blank brackets contain the same terms as (5-18) and are used to

show the differences between the two formulations. In this case

f
= X T -- (5-32)Arn -v 2

m

X
.f _ .v-- m (5-33)

A
mp
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T
Using (5-33)to eliminate X

--V

(5-28), it is found that again

from (5-32) and using the state equation

IT1
- 2 X (5-23)

m m m

Solution (5-25) holds thus

f- P m X (5-34)-- 2 --v
mf

which is the same as (5-26) since a = f/re.

The preceding VSI examples result in the same control and in none

of them is it necessary to use the variable Xm. Before interpreting

what this means one additional example is presented which involves

placing a constraint on the thrust. Assume that

f2 < f2 (5-35)
-- O

where fo is the thrust limit. Following Breakwel117, the constraint

may be handled by adding to the functional (5-30) the term

2oY (f2 _ f ) = 0 (5-36)

where y is selected to satisfy (5-36).

F--_5-30)]+ _' (f2. f2o)

tf tf tfos ]-S{<
0 0 0

Thus for this case

)6r + ( ) 6v

(5-37)

m -v m 2 8m + -Vm Xm -p Y'

(5-3s)

where the blank brackets are the same as (5-31) and not needed in the

argument.

Consider the coefficients of 6m and 8f in (5-38)

f
T --

X -X =0
m --v 2

m

(5-39)
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?

f ___

k
--V

k

m(7 l + ------._-_)
P

(5-40)

Eliminating k T
--V

in (5-39) by using (5-40)

A f2( m)Am= i_' +_ --
p m

(5-41)

When f _ fo' y' must be zero to satisfy (5-36). Therefore the

solutions for k and f in such unconstrained regions can differ from
rn

(5-25) and (5-34) at most by a constant. When f = fo the only admissi-

ble solution for (5-40) is

f k
f_ o-v (5-42)

- I

Therefore

('_, +--_) m- --vf (5-43)
0

With this result it is possible to rewrite (5-40) with a new variable

such that

f = ms k (5-44)
-- --V

where

_ = 1 m

f
O mi W>f

mV 0

(5-45)

The Euler variable k and its differential equation have again been
m

eliminated from the problem.

In the preceding examples the manipulations required to remove

k m are not particularly difficult but by no means are they obvious. The

meaning of a superfluous Euler variable immediately comes into ques-

tion and it seems reasonable to inquire if there is general significance
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in this phenomenon or if the preceding examples are only isolated

special cases. Conceptually there is nothing about the variable X m

which is unique except for its assodiation with the cost variable m in

a Mayer form problem° In reference 17 Breakwell interprets the

Euler variables as the sensitivity of the absolute minimum of the cost

function (i.e. the unconstrained minimum) to changes in the state vari-

ables. Therefore for the problem of this thesis

_i_

Om _ 8mf
AT(t) - P - (5-46)

0s t 0s_ t

where m* denotes the minimum value of m obtainable from the initial
P P ,

state when no control constraints are used; similarly for - mf.

In a typical two point boundary value problem with physical rates

of the form s = g (s,a), the usual objective is to find a control solution

which satisfies the end point. If any of the state variables have free

end conditions the solution is not unique_ Optimization criterion are

then used to assure uniqueness. From Breakwell's interpretation,

when the Euler variables are formed i_tc: a vector they describe the

direction in state space of maximum sensitivity of the cost, i.e. the

gradient. However for state variables involved in the cost function

such information is available directly from the governing differential

equations. In answering the question: "How do state variations affect

the cost?", the Euler variables provide a coupling between state vari-

ables and the cost function which for some variables is not evident

from the system equations° But for state variables involved in the

cost this coupling is essentially a priori information and is in some

sense superfluous.

The classical approach in the calculus of variations assigns an

Euler variable for each state variable. If a variable is superfluous it

should drop out of the formulation. But finding a way to assure that it

does may be exceedingly difficult, even when it is recognized that the

variable is superfluous° As is subsequently shown, the Euler variables

correspond to the costate variables in Pontryagin formulations. If the

variable is superfluous in the calculus of variations it is also superfluous
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using the Hamiltonian approach. This fact was tacitly acknowledged in

Chapter III when the state variation_ 8mf,was dropped from considera-
tion and the last row of the adjoint set was deleted. The reason given

in Chapter Ill for deleting one row of adjoint functions was different

from here, but the result is the same°

The general significance of a superfluous Euler variable is indi-

cated by comparing the classical approach to the newer state space
approach using the Pontryagin maximum principle. The classical
formulation suffers from several difficulties_ two of which are: i)

The number of variables and equations are usually quite large and_

perhaps due to tradition, are often treated individually as scalars. As

a result algebraic detail often obscures important ideas in classical
formulations. The more compact vector and matrix notation are only

now becoming widespread in the literature. 2) The theory offers no

suggestion of how to solve for the correct boundary conditions on the
Euler variables.

However, an important attribute of the more detailed notation is

indicated by the preceding examples. By sufficient manipulation an
unneeded variable was eliminated° It is more than coincidence that

the variable is precisely the one that creates problems in the state

space approach°

The state space approach using vector and matrix notation as in

Chapter Ill is popular because of its compactness. Further, when

coupled with the Pontryagin maximum principle it may be used to

solve optimization problems including cases of linear control (the CSI

problem) which can not be completely solved in the calculus of varia-

tions. The approach also provides a method of determining the bound-

ary values for the costate variables° Finally, the optimality criterion
is more useful. This last statement is discussed fully in Appendix D.

In the state space approach the system differential equations are

written in vector form, an appropriate cost function is chosen and then

methods are sought to find the desired solution. From the references

previously mentioned it is apparent that the solutions often encounter

a singular matrix. In the problem of this thesis the singular matrix
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is denoted as M and is the seven by seven matrix corresponding too
M in Chapter III_ These matrices are discussed in detail in Appendix C.

It is suggested that such singular m_.trices may be the result of attempt-

ing to optimize a function of state and at the same time retain a costate
variable (or Euler variable) which is superfluous° In the problem of

this thesis such was the case° It is further suggested that difficulties

sometimes encountered in numerically finding terminal values for the

Euler variables may also be due to the presence of a superfluous Euler

variable which was not recognized as such°

No attempt will be made in this report to derive the general rule

which will show when an Euler variable is superfluous and thus may be

eliminated a priori. It may be the case that those matrix elements

which cause nonphysical singularities to occur in state space formula-

tions can always be removed without changing the problem°

In the remainder of this chapter the relationship of the calculus of

variations solution to the state space solution is shown for the low-

thrust problem only. The method of deleting X m is illustrated.

5.4 Removal of a Superfluous Euler Variable

Although an Euler variable may be superfluous, a general method

of removing one is not obvious from the derivation in section 5.3. Con-

sider_ however_ the following derivation of the problem in section 5.3

which combines the compact notation with the classical approach. It

may be indicative of a general method°

Assume the system is described by physical rates which have the

form

= g (s_ a) (5-47)

where s is the state vector, _a the control vector and g is a vector func-

tion of state and control.

Assume that the cost variable is some scalar function of the physi-

cal rates or some nonlinear function of the control.

= h (5-48)
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or

= h (_a) (5-49)

where S is the cost integrando

Further, allow the physical rates to be subjected to constraints.

Define the constrained variables as a vector function of the physical

rates or of the control° That is

X:2[g(s a)] (5-5o)

A general functional, equivalent to those used in section 5.3 is

F = S +_Tg+ __,T Y (5-51)

!

where __ is the vector of Euler variables and where Z is determined

in such a fashion that the constraint is satisfied. It is a vector equiva-
!

lent of the y in section 5° 3.

Application of the usual variational technique produces the expanded

set of state equations, Euler equations and control equations.

s = g (s_ a) (5-47)

- = ' _=-- (5-52)
-- - 8s 8s

-- - 8a _a (5-53)

!

For the unrestricted case such that y = O and using the familiar

definitionof the matrices A and B. that is

_- A (5-54)
8s

8___ = B (5-55)
8a

then from (5-52) one obtains

i T = - AT A (5-56)
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A solution to the set (5-53) to within an unknown scale factor, is

BTa = >t (5-57)

That (5-57) is a solution n_ay b_ v_ified by expansion.

equations of state and their adjoint set are

6s = A 6s + B 6a

Tl_ variational

(5-5s)

FL = -_A_A (5-59)

Since the Euler equations (5-56) satisfy the adjoint relation as does

(5-59) a solution for (5-56) is obtained by choosing

Then

_f : i (5-60)

_t = "AT _f (5-61)

Dropping the subscript t from (5-61) and substituting into (6-57) yields

_a = B T _T A__f (5-62)

By partitioning j_ and __f it is apparent that deleting the seventh row

of J_. , __]KT7' and deleting the unknown boundary value kmf eliminates

the superfluous Euler variable from consideration. That is

- I

f

In order to find the optimal trajectory it is only necessary to find

the final value of the six Euler variables. (Or, since the adjoint and

fundamental solutions, discussed in Chapter III, allow transformation

at will between one terminus and the other; the initial values of the

Euler variables may be used. )

(5-63)

By letting

(5-64)
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and deleting ---_7 and kmf from 15-,63),the expresszen yields

a BT _T-- - (5  65)

which is identical with the expression for the optimal control program

fcr guidance demved in Chapter :U_. Thus bcth _be Pcntryagm principle

and the Euler variables give the same result _.ber: k _s deleted° It ism

shown in Appendix C that along the optimal trajectcry kf is a full v_c_

tor of B T j_._,_, thus equation (5--62), &splays the we]_, known and very

trcublesome singularity when ev_!uated along the optima! trajec!oryo

This is the consequence of optimality which has ;nst_gated the search

.ur_h_r shown that. _Pis net. afor new methods0.,ncluding this cneo It is _ '

null Vectcr of B T _,_,:T thus (5 65) ca_ be used.,

!

For" the restric:ted VSI case th_ preceding arguments hold with 7

enterxng as in sectlen 5o3o The restrxc',ed VS[ c:_,oae Is cempl_t_!y

de÷erm_nate in the calculus cf varlat_,cps using Breakwel! s approach

The CSZ case may _J_c be treated m _n analcgcu_ar_d deleting _m o . o -_

fashion except that the coast phase can not be umquely determ]nedo

This is due to the so.-cal_ed degerer'_.cy of the calculus of - -"
7

for !;near optimums

5. 5 So!uticn by Direct integration

There are two general approaches for fir, dtng an ophma! trajectory.,

Descriptions of the first methc..d areusua!._v prefaced by: ,,Tf any non

optimal solution can be found, wh_c.h satisfies the boundary cond.,tic:ns,
II

then the solutxon can be moved ]n the direct:c'..n of the optimal..., elc_

This approach is usua!.Zy called a gradier* method° Jt is no_ used _n

this report because nonoptJmal solutions carnot sahsfy the Eu!er

equations_ thus it would be dif:f_cult to relate any nonopttma.1 centre.:!

1o the form of equation {5-.65)

The second general approach is often described as "solving the

wrong problem in an cpt_mal mannero" This _s th_ approachu_ed _n

Chapter Vto An initial guess is made for the imt_al Euler variables

u_ then the state equations_ adje.int set and Eul.er variables are in.t_gr.a_-

ed to the final time° The resultanghnal values are compared with the

desired final values and a new estimate of l., is computed° The process
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is repeated until the boundary values are satisfied. The fact that the

gravitational field is conservative and well behaved aids materially in

improving the speed of convergence.

5.6 Properties of Optimal Trajectories

It is possible to gain considerable insight into the properties of

propellant-optimal trajectories without resorting to machine computa-

tion. Such insight aids materially in working with the mathematics of

the transfer process and often leads to new methods of approach.

For this purpose, consider the problem of transferringbetweentwo

planets with minimum propellant expenditure as one of changing energy

and angular momentum in the most efficient manner.

From the energy integral of orbital mechanics one may write the

energy per unit mass of the vehicle as

2
v #

e - (5-67)
2 r

and the energy time derivative as

e =vv + _.El r (5-68)
r

Equation (5-68) may be written in the vector notation and reduced with

help of the equations of motion to

T
e = v a (5-69)

Equation (5-69) represents the rate of energy change imparted to the

vehicle. The rate of energy expenditure by the propulsion system is

the power

2 Tmc mc c
p - - (5-7Q)

2 2

where rn is considered as the mass flow rate per unit mass and c has

the opposite sense of a.

Similarly a functional expression for angular momentum is

h = r Xv (5-71)
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h-- rXv+rXv (5-72)

where the notation signifies the vector product ef r and Vo

(5-72) is reduced with help of the equatlons of motions to

h= rXa

Equation

(5-73)

Using equations (5_69) and (5,_73) the problem is formulated as:

tf

Minimize S = ] - m dt
0

(5-74)

subject tc the constraints

tf

Ae = f ....vT a dt (5-75)
0

tf

Ah......= j r X a dl (5-76)
0

plus velocity and posl!lcn constraints and where Ae and Ah are known

quantities°

The above formulation is not computationally desirable; however

it provides a basis for scme slgmhcant qua!i_a*_.ve arguments°

It is apparent from equation (5 69) that with a fixed m magnitude

the vehicle changes energy most rapidly, thus mc, s_ efhcient!y, when

vis large and v and a are cclinearo From the energy equation (5-67)

one observes that in a central force f_eld *.he velocity magnitude goes

inversely with the square rec,t of the radius, From equation (5-73) it

is apparent that h changes most rapidly whep r is large and orthogonal

to ao

From the preceding observations one may deduce that the trajec-

tory which minimizes the propeliant expenditure will tend to keep the

exhaust velocity vector ahgned with the large velocity vector when the

vehicle is deep in a gravitational field so that energy is changed most

efficiently,, It will. also tend to rotate the angular momentum vector

when the vehicle is far out in the gravitational field so that the vector

r has large magnitude Where these reqmremerts are ineompatable
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with boundary conditions, the optimum solution should resolve the

conflict in favor of propellant conservation.

The trajectories which have been generated numerically in this

thesis all appear to satisfy these precepts in so far as boundary con-

ditions permit. The increase in specific impulse which is character-

istic of variable thrust rockets as they traverse the center portion of

the heliocentric phase is due to the acceleration vector becoming orthog-

onal to the velocity vector. Likewise the coast phase for a thrust-

limited rocket occurs when the acceleration vector rotates through

the orthogonal orientation.

With the qualitative arguments of this section, it is possible to
sketch a reasonable approximation to a low-thrust optimum trajectory

without resorting to machine computation.
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CHAPTER Vl

COMPUTATIONAL PROCEDURE FOR TRAJECTORIES

6. 1 Summary of Chapter VI

Details of a procedure for using the guidance equatlc, n as the basis

for trajectory computations are set forth mthis chapter° Specifically_

the differential equations to be integrated and the procedure for cor,-

recting initial conditions on the Euler equations are presented°

6_ 2 General Remarks

In Chapter V the fundamental problem of selecting initial (or final)

conditions on the Euler variables is introduced° Since the acceleration

program is an explicit function of the Euler variables it is necessary to

make a first estimate of the Euler initial conditions in order to start

the iteration° This estimate will usually be a gross error under the

best of circumstances;, thus it is desirable to choose a very simple

estimate such as the null vector or a unit_, vector° Because of this_ the

procedure we seek must be strongly convergent and independent of the

error in the first iteration attempt°

In any iterative procedure the speed of convergence is directly

dependent upon the validity of assuming that certain quantlties do not

change from one iteration tc the next° In the preceding chapters it was

explicitly assumed that the miss vector at the terminal point was de-,

pendent only upon a change in the initial Euler vector and that J_ and

B were invariant for neighboring trajectories, For small perturbations

around a reference trajectory such an assumption is valid° However

for the large perturbations expected in trajectory computation A and

B are not invarianto The change of these quantities from one iteration

to the next and the change of other second order quantities will deter-

mine the speed of convergence of the procedure°

75



6. 3 The Correction Procedure

From Chapter III one may write the optimal acceleration program

as a scalar times a matrix function of the adjoint set and the initiali-

zation vector.

o o B T j_.T voa = (6-i)

where 7 is the scalar switching function derived from the limiting con-

dition on acceleration, B is the seven by three matrix of partial deriva-

tives, 8g/aa_ _* is the six by seven reduced adjoint set and __ is the

six by one initialization vector.

In order to simplify the notation in certain equations to follow,

Euler variables will be used interchangeably with the matrix notation.

Recall from Chapter V that

= B T j__,T v (6-2)
_V

and

_. = - _. (6-3)
--V --r

The objective of the iterative search for the optimal acceleration

program is to find the vector v ° which causes the six component miss

vector, _, to approach the null vector to some desired accuracy. Thus

v = v + _v (6-4)-n -n-i -

and we desire that

O
- u : u (6-5)

--n --

for n as small as possible, where n is the iteration number.

The miss vector, 4, may be written as the difference in final state

which results when a nonoptimal acceleration program, a, is used in

place of a °. Define

tf

f
0

0

and

A*B a dt = Mu (6-6)

_* B (a °-a) dt (6-8)
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then using (6-i) and (6-8)

tf

__ = f J__* B B T A *T Aty _) dt
0

(6-9)

Equation (6_9) implicitly assumes that ._K and B are invariant functions

of time and thus constant from one iteration to the next° The assump-

tion permits adequate convergence and is used throughout°

In order to provide for the discontinuities which occur in certain

variables at the beginning and end of restricted thrust regions, it is

convenient to write equatien (6-9) as

j - 1 ti+ 1

i=O SX t i

y_ dt A_ (6-,10)

where j is the number of distinct phases ef the trajectory Expanding

(6-.10) according to Leibniz's rule yields

j-I F ti+l .m 8y
-_= _ / .; ( j_': BBTj_-_T_ + _-"" BBTA-'_"'-- v ..... ) dt

- i=O Lit a_V

+ ]_'_': B BTj__ _'_T
(6-11)

(k = i, i+l)

Since y is the discontinuous switching parameter, the time at. which a

discontinuity occurs_ tk_ and Its derlvahve with respect to __ may be eval-

uated frc, m the derivation in Chapter. ]Vo Rewriting equation (3-76) we

obtain
0q

at k O=u

Ou Oq
Ot

(6-12)

By comparing (3-52) and (6-2) observe that

q= k
--'V

(6-13)
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Using (6-2) and (6-3) and taking the derivativ% yields

T B T A,T
at k X--V

T
-- --V --r

(6-14)

The term 87/8_ may be evaluated from the definitions in Chapter III_

which are written here in more convenient form.

a
7 = min I; o 1

--V

2a
0 if o 1 > 1

m IXl -
--V

a 2a
o 1 o 1

if < 1

m I__vl m __vl

(vsl) (6-15)

(csD

(6-16)

Therefore by differentiating and applying equation (6-.2)

a _ T BTA,T

o -v if_ 0_Im I_ 13
--V8___ =_

89
0 if 7 = O, 1

(6-17)

From equation (6-6) let us make the following definitions for 77 and M.

= 7A* B BT_/_*T _ (6-19)

Jl = M __ (6-20)

Using (6-11) and (6-14) through (6-20) one obtains

where we let

tf( ) T- _lxTx I
--V --r

,y =
}I 7_i,

tcut off - 6

_v

tcut on + 6

(6-21)

(6-22)

78



The final term in equation (6-21) is evaluated at points such that ?, is
not zero, i.e. E before cut-off and £ after cut-on.

Define

M _ =

tf(i_ I ,° °T ) °T

0 -(ao) 2 dt- T
7 X X I

toff

t
on

(6-23)

then

Av = - M'_-I_ (6 ,-24)

and from (6-4), (6-5) and (6-6)

!6-25)

Thus _he correction procedure to be employed is

v =: V : M'!"-I g_
....n --n 1 ,- (6-26)

6o 4 Quantities to be Computed

In order to obtain the quantit:es M _': ard _ of equation t'6 ._26) it is

*h adjo_r_t set.. the vector-necessary to integrate the state variab!es,, . e

and the matrix M_'o In add:_ic.n ?_ is ccr.veniep_t tc. integrate the Euler

variables rather than compu;e them from other quantitieSo

From the discussion :n Chapter V il may be noted that the adjoint

equations are ;ntegratedto be backward in ,:me frcm./_f = .... However,

i+ is easily shown tha _ :r:*egrahng backwards in *Ime is an unnecessary

comphcationo In Chapter 11[ the v_riatlcr._.] equatlcns of sta*e and _he:r

adjoint set were solved toge_:her to. produce

_f

Af 6sf : A t 6s, + f AB 6a dt (6_,27)
t

and _A_

problem. For computing the entiretrajectcry fromt = 0

may write an equivalen_ equation

to t = tf

f was arbitrarily chosen equal _c, the identity in the guidance

one

tf

]_1 _')I¢,_,:__: _A_ o'_<5_oS + 0f "A'I': B B T ]_,f: T A (7 ,P) dt
(6-28)
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** has both the last row and last column of _. deleted in orderwhere _. f

to be comparable with _ and where 5s = O since the problem starts
-- --O --

from a given state. Since the initial condition on .A. is still arbitrary

it is convenient to choose___o = I so that backward integration is not

necessary. Thus in place of (6-24) use

* # M -'i_
-]_f __ = a_v (6-29)

J_. = I (6-30)
O

An interpretation of this procedure is as follows. An arbitrary accel-

eration program is selected (i.e. estimate_) ; then the state and ad-

joint equations are integrated forward resulting in a miss in position

and velocity, - _. Since the acceleration program satisfies the condi-

tions for an optimum to whatever terminal point it reached, namely

(IrTl+ _), the propellant required to reach that point is minimum.
!

Thus we are assured that when _--_O_ mf--_mf(max) also. It is un-

important, therefore, that the "miss" in mf is unknown_ since if the

procedure converges on the physical boundary conditions it does so via

a propellant-optimal trajectory.

The term -]_ f [ merely reflects the physical miss back to the

initial state and compensates for the procedure of integrating the ad-

joint set forward in time instead of backward in time. In the machine

procedure it is convenient to use equation (6-31) in lieu of (6-26).

v = y - M*-lJ_ **
--n --n-i f _ (6-31)

The full set of equations that must be integrated are listed with the

appropriate initial conditions.

s_ :g(s a) (6-32)

s (o) : s
-- --O

(6 -33)

Jk= -.A.A (6 -34)
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J_ = i (6-35)
O

= _ATk

(o) = v

1_I* B T ,T=TA*B A

M* (0)= 0

a° 2

(6-36)

(6-37)

(6 _38)

(6 -39)

_ = M__p

where M is the first term of M*

(6 -40)

M (0) = 0 (6-,41)

(0) = O (6-42)

An information flow chart and the FORTRAN program used to meeha-,

nize the precedingequations are inc]uded in Appendix Go

The procedure worked satisfactorily_ converging to very small

values for _ with surprisingly few iterations° The initial estimates

for v that were used are

p = O (VSI trajectories) (6-43)

(CSI trajectories) (6-44)
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CHAPTER VII

A NUMERICAL EXAMPLE

7. 1 Summary of Chapter VII

In this chapter a sample heliocentric transfer from Earth to Mars

is described. The selected mission was programmed for machine com-

putation to test the theories developed in the thesis. Numerical results

from the test are presented and discussed.

7.2 General Remarks

The linear guidance theory of Chapter Ill assumes that an optimal

reference trajectory is known. In order to test the guidance theory,

therefore, it is necessary to compute an optimal reference trajectory.

In Chapter V the discussion of a superfluous Euler equation shows that

the solution of the linear guidance equation satisfies the necessary

conditions for an optimum. Thus in theory.° iterative solution of the

guidance equation will generate the desired optimal reference. If the

technique converges the linear guidance theory is validated. If the

procedure converges rapidly then the theory also provides a simp!e_

fast and effective way of generating low-thrust trajectories.

The procedure was found to converge rapidly for both CSI and VSI

vehicles.

7.3 The Mission

The mission selected was a 150-day heliocentric transfer from

Earth to Mars. Flight time of 150 days was chosen in order that

numerical results could be compared with a 162-day coplanar trajectory

generated by Friedlander 12. The period chosen corresponds to the
37

favorable opposition of Mars during the summer of 1971 The depar-

ture date, from a position on Earth's sphere of influence, is J.D. 244-

1090. 5. Arrival at Mars sphere of influence is 150 days later. The

vehicle is assumed to have Earth's orbital velocity at departure and to

match the Martian velocity at arrival. These velocity conditions are
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not optimal for the entire missi0n_ i. eo escape_ transfers capture_

however the author wanted to test out-of-plane components of the state

vector° The use of planetary, velocities for initial and final velocity

permitted this°

Both CSI and VSI modes of control were tested° The assumption

was made that a space vehicle of given size and power could be con-
trolled under either mode of operation_ CSI or VSI. Thus two complete

sets of data were generated which differ only in mode of control° In
addition the adjoint sets for an optimal thrust program and an optimal

acceleration program were generated for each control mode° The pur-

pose of having both types of adjoint functions is to permit all engine
anomalies of interest to be studied° The subtle difference between the

two sets of adjoint functions is discussed in Appendix Co

7°4 Computational Coordlnates

The coordinate system used for the mission analysis is a simple

but effective system which is defined by the transfer plane° The trans-

fer plane is the plane which passes through the sun and contains the

desired departure and arrival points° The x axis passes through the

launch point, the z axis is normal to the plane in the northerly direction:_

and the y axis completes the right hand triad° A procedure for trans-.

forming ephemeris data into computational coordinates is derived in

Appendix Fo Figure 7La illustrates the geometry of the transfer°

7. 5 Engine Selection

Engine sizing for the sample mmsion was computed on the basis of

the mass distribution for maximum payload derived in Chapter If. That

is

_opt = Popt =_ j (7-1)
(I m O

A trial trajectory for a mass independent VSI rocket was computed to

obtain a first approximation for J o The value for the one-way transfer

was scaled up by a factor of 4 to provide a more realistic value for a

round trip mission; also to insure that mass would never be reduced to

zero during computer tests. A value for a of i0 kg/kw was selected as
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being reasonable, though perhaps unattainable in less than a decade.

The resulting value for exhaust power is

P - 0. 0242 kw (7-2)
m o kg

This value for power was used for both modes of controls (VSI) and

(CSI).

The VSI trajectory was generated and the resulting value for initial

accelerations i. 57 X 10 -4 go' was used in the field-free space equa-

tions of Appendix A to obtain an optimum initial acceleration (thrust

level) for the CSI vehicle. A value of io 2 X 10 -4 go was used° This

value of optimum initial acceleration, based on field-free space, is in

surprisingly good agreement with the more rigorous computations of

Melbourne and Sauero

7.6 Numerical Results

The computer output data for the final iteration of each mode of

control are reproduced as Appendix H o In addition_ plots of several

interesting output quantities are presented as Figures H-a through H-r.

The data samples and the plots are strictly valid only for the particular

cases they represent, however they are indicative of the order of mag.-

nitudes applicable to many one-way missions in the solar system° The

adjoint functions_ for example, (Figures H-d through H-r) are in good

agreement with the values obtained by Friedlander for a coplanar trans-

fer.

It is interesting to observe that the acceleration magnitude for a

VSI vehicle_ Figure H-as is approximately a linear function of time and

almost symmetric with respect to the midpoint° Comparison with the

field-free space acceleration program, Figure 2-,c_ which is linear and

symmetric_ confirms that to first order analysis of VSI trajectories in

field-free space may be applied to the gravitational field.

This result only confirms the work of other investigators and was

anticipated° The analysis for CSI vehicles in field-free space is not

as straightforward and requires a large amount of work. The field-

free space derivations in Appendix A result in a value for the optimum
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CSI thrust level which is in gocd agreement with the computer results
of Melbourne and Sauer. The value obtained for the final mass ratio

is larger than the value which results from computer studies in the

gravitational field. Referring to Figure 2-d. observe that the point

representing the CSI transfer falls slightly below the curve represent-

ing field-free space prediction. This is satisfying in that the penalty
for CSI control is less than expected. However_ before concluding that

field-free space is always a good predictor for CSI transfers_ it will

be necessary to test a large number of additional points to determine

if agreement is sufficiently good to warrant the computational effort.

The limitation of time has prevented the author from undertaking such

a study.

In Figures H-b and H-c the transfer' plane components of position

and acceleration are plotted. The out-of-plane components are quite
small and are not considered further. A surprising result is that the

maximum difference between the physical paths of the VSI and CSI

trajectories is less than 0.01 Aou. The large difference in the form

of the acceleration programs, Figure H-a0 leads one to anticipate

rather large trajectory differences. This is found not to be the case.

A very important characteristic of continuous-thrust rockets is

shown in Figure H-p. This is the sensitivity of position error to mass

change when the thrust program is specified. The y component of
position at arrival time is subject to an error of 0. 81 X 106 km for

1%variation in launch weight. For a one-ton vehicle this is approxi-

mately equivalent to a 25_000 mile _erminal error for each pound of

launch weight variation. The large sensitivity to mass changes

emphasizes the requirement for accelerometers with sensitivities of

the order of 10 -5 g. Such instruments will be extremely important in

the navigation of low-thrust spacecraft.

7.7 ConverGence of the Computation Routine

The results discussed in the preceding section_ although interest-

ing, are only by-products of the experiment devised to test linear

guidance theory as a computational method for trajectories. Conver-

gence of the routine is crucial to the thesis since the linear theory
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purports to null the miss vector for small variations in state° Appli-

cation of the guidance theory to the launch state, ioeo trajectory com-

putation_ provides the most severe test of guidance° The results of

this test are plotted in Figure 7-bo The criterion chosen as indicative

of convergence is the RMS value of miss vector length° In order to be

dimensionally comparable, the velocity components are multiplied by

flight time_ 150 days. Therefore the ordinate in Figure 7-.b is the RMS

o The abscissa is the iteration number°
value in Aou°, of t v

Several cases were tested; the three plotted are indicative of all tests°

The first one or two points in each case represent the result of

estimating initial values for the Euler variables, _u, and were widely

scattered. These points are not plctted_

The unrestricted VSI trajectory converges very rapidly; reducing

] _ I by approximately two orders of magnitude each iteration. Con-

vergence is very smooth° The CSI cases converge less rapidly and

less smoothly._ but satisfactorily° In general.° as the thrust limit, ao,

is reduced, convergence is slower° If._ for example, a ° is reduced e

below the value which permits no coast period,, the procedure will not

converge° This physically corresponds to a vehicle "in extremis"

such that insufficient thrust is available to complete the mission° The

result also indicates that reserve power must be aval!ab!e for guidance°

A CSI vehicle which is beyond the coast phase cannot correct for state

error in all six components of _ unless reserve power is avail.ableo If

reserve power is not available., guidance must. be based on a formula-
14

tion such as Pfeiffer's , which gives the minimum miss°

It should be reported that the CSI miss vector magnitude entered

a small limit cycle around the target prior to addition of the term

0tk/0_'o This term is derived in section 6o 3° Prediction of the switch-

ing time by including the above derivative is necessary to obtain the

desired accuracy.

It may be desirable to include an additional term in the procedure

to smooth convergence of the CSI routine° The term 0m/8__., evaluated
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at the switch points, will probably be sufficient to do this. Computer

.tests were completed before the significance of this term was recog-

nized and time limitation precluded retesting of the procedure.

The accuracy obtained from the tests is significant° The routine

was stopped after a predetermined number of iterations to conserve

computer time_ however for VSI trajectories_ the largest error in a

component of position was of the order of one mileo The largest error

in velocity was of the orderof20feetperhouro These values are given

in the computer results in Appendix H. The computer was stopped

before attaining this accuracy for CSI trajectories._ however the con-.

vergence plots in Figure 7-b indicate such accuracy is attainable with

a sufficient number of iterations°
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CHAPTER VIH

SUMMARY AND CONCLUSIONS

8. 1 Summary

In this report the objective has been to justify the argument: "There

exists a linear method which produces a propel!.ant.-optimal control pro-

gram in a noniterative form for guidance of !ow-thrust space vehicles

and which provides a simple, rapid!.y converging iter.ative technique for

computing propellant-optimal trajectories. "

In pursuit of this objective it is necessary in Chapter Ii.. to develop

the parameters which characterize low_.thrust veh_c!eso Due to "state

ef the art" restrictions on variable ,-specific, impulse (VSI) machines,

the parameters fcr constant-.specific-impul.se (CS[) vehicles are devel.-

oped in addition to the idealized mode of control.

As an adjunct of Chapter II, the equations for field-free space appli-
cation of CSI control are derived ie Appendix A. This derivation is

used to test the validity of approximating CSI transfers in the solar'

system by field-free space ana].ysis, as has prevlously been done for

constant.-power vehicles°

The parametric derivat:,cns provide a starting point for investiga-

ting propel.iant-optimal guidance of low. thrust vehic!eSo For this study
the vehicle _s characterized by _ts "state"° The .state _s represented by

a vector consisting of three components of pos_tic.n, three components

of velocity and the vehicle mass° The differential equation of state is

linearlzed by considering variations of the state vector with respect to

an optimal reference trajectory. Auxiliary functions, called adjoint

variables, are used to solve the hnearized differential equation° The

solution to the expanded set of equations is called the state transition

equation or fundamenta! guidance equation and serves as the basis of

the guidance theory°
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The linear guidance theory is developed in Chapter III and applied
to both modes of vehicle control. The solution for an unrestricted VSI

vehicle is derived using the calculus of variations and then using Pontry-

agin's maximum principle to prove that both methods lead to the same

result. The CSI problem is then solved using the Hamiltoniano The

crucial step in either approach is deletion of the adjoint functions asso-
ciated with the mass rate equation. Deletion of this set of functions to

form a reduced adjoint set permits a solution to be obtained directly.

Otherwise_ the system is indeterminate due to a singular matrix. Proof

of the singularity and justification for deleting the one set of adjoint

functions are treated in Appendix C and Chapter V respectively°

As an adjunct of Chapter III_ explanation of the adjoint relationship

and derivation of Pontryagin's principle are presented in Appendices B

and D respectively. Also in Appendix D is a discussion of optimality

criteria as derived from the Pontryagin principle and from the calculus
of variations° Important properties of the state transition equation are

presented and discussed in Appendix Co

The problem of estimating the vehicle state is studied in Chapter IV

as a problem in navigation. The method of redundant measurements

studied by Battin, Stern and Potter is extended to include continuous

measurement of low-thrust engine performance° Based on the concept

of filtering redundant data with a biased filter, two methods are derived

for predicting future state. One is a simple method for short term

prediction; the other is more complex but also more accurate for long

range prediction° The effect of omitting engine measurements is dis-
cussed°

The problem of computing optimal reference trajectories is dis-

cussed in Chapters V and Vl. By first deriving the Euler equations with

the calculus of variations and then demonstrating that the set contains

a superfluous Euler equation_ the linear guidance theory is shown to be

useful for computing optimal reference trajectories. The superfluous

Euler variable is a result of optimizing a state variable.
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To provide a comparison of linear guidance with better known com-

putation techniques_ the steepest ascent formulation of the trajectory

problem is presented in Appendix Eu

Chapter VII describes the sample misslon that was simulated on a

digital computer to test the guidance equation as a computational device

for trajectories. The results of the test are dlscussedo

8.2 Conclusions

On the basis of the analysis and the subsequent simulations the

following conclusions were reached.

i. The linear guidance method is applicable to guidance of low-

thrust vehicles in interplanetary flight.

2. The rapid convergence of the test procedure proves the method

to be applicable for computing propellant-optimal trajectories°

3 For CSI transfers_ reserve power for guidance is necessary°

4. Mathematical descriptions of many optimization problems

which contain a state variable in the cost,_ will produce a

superfluous Euler variable w'hen the classical calculus of

variations is used. Deletion of this Euler variable removes

several difficulties associated with solvlng optimal control

problems.

5. Sightings on celestial bodies a_: discrete intervals may be

combined with continuous measurement_ of engine perform-

ance to estimate _zhe state cf the vehlc]eo

6. The uncertainty in state is increased if engine measurements

are omitted.

7. Field-free space analysis of CSI transfers provide a reason-

able approximation for the results in a gravitational field_

however additional study is needed to ascertain the general

applicability of the method.

8.3 Contributions of the Investigation

The items in the report which are believed to be novel are dis-

cussed in this section.
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Derivation of the propellant-optimal control law by the method of

Chapter III is thought to be original. The crucial step in the derivation

is the formation of a reduced adjoint set. This permits inversion of a

matrix which otherwise would be singular. Other approaches to this

problem usually require the addition of artificial constraints or weight-

ing matrices which remove the singularity but also change the char-

acter of the cost functlon. The method of this thesis preserves the

cost function and produces the optimal control directly.

The explanation of the singularity on the basis of a superfluous

Euler variable is thought to be novel. The simplification resulting

from deletion of the extra variable_ by using the reduced adjoint set,

may resolve many difficulties associated with optimal control problems

other than the one in this report..

The equations which combine the celestial sights and the continuous

measurements of engine performance are not believed to have been pre-

viously derived.

Finally, the method of generahng the optimal trajectory is believed

to be simpler than methods previously used. The method results from

linearizing the state equations but using the complete nonlinear cost

function.

8.4 Recommendations for Further Study

The current research has revealed some areas where additional

work might produce fruitful results and other areas where information

is lacking with respect to low-,thrust transfers.

The computational method needs to be expanded to the many body

problem° Preliminary work does not show any monumental difficulties

associated with such an effort° The prlmary problem is to include an

ephemeris in the routine°

It appears possible to use the method as a search routine for finding

families of trajectories_ with the goal of defining optimal launch times

for low-thrust missions°
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A study of methods to join different segments of an optimal tra-

.jectory should be interesting. In particular the idea of making only

•one coordinate change between launch and capture is appealing.

Research to define rigorously the concept of superfluous Euler

variables is needed. It is doubtful that the singularities in all optimi-

zation problems can be removed by the method of this thesis_ but per-

haps some can. Knowledge of the general applicability is needed°

When data on the reliability of low-thrust power plants and thrusters

is available, a study of the effects of engine anomalies on the probability
of mission success should be made.

A study of VTA guidance using the "critical" plane associated with
ballistic guidance is needed31. This concept is difficult to visualize

in the six dimensional phase space associated with the equations of

motion. However, the existence of a concept analogous to the "critical

plane" idea might provide additional insight to the guidance problem.
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APPENDIX A

TRANSFERS IN FIELD-FREE SPACE

Ao 1 Introduction

In this appendix the equations for point-to-point transfer of low-

thrust rockets in field-free space (FFS) are presented. The optimal

transfer problem for a constant power VSI rocket is a straight forward

application of the calculus of variations. Examples of this transfer are

found frequently in the literature. It is reproduced here for complete-

ness.

Point-to-point transfer of a CSI rocket is more difficult to compute°

The equations are derived in this appendix. Results of the derivation

were applied to the sample mission in the thesis to ascertain the validity

of using FFS predictions in the gravitation field° FFS analysis is found

to furnish a reasonable approximation for CSI transfers_ however the

analysis is quite tedious°

The author is indebted to Mr° Neal Carlson for checking the deriva-

tion and for suggesting different methods of approach.

Ao 2 Constant Power Transfer

Assume that in FFS we desire to traverse the distance L in the

time T such that the vehicle begins and ends at rest and such that the

acceleration integral is a minimum°

That is
T

2

minimize J = -j _a_ dt (A-I)
0 2

subject to

and the boundary conditions

T

f
0

v (0) = 0

v (T)= 0

v dt = L (A-2)

(A-3)
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Forming a functional F, one obtains

T T"2
v

J dt + 7r (L - J v dt)
0 2 0

(A-4)

Direct application of the variational technique produces the optimal

velocity schedule from which the acceleration is easily derived.

6L 2t

a- T2 (I T )

Evaluating the acceleration integral, obtain

6L 2
j-

T 3

From equation (A-5) the optimal initial acceleration is

(A-5)

(A-6)

6L

a ° - T2 (A-7)

A plot of equation (A-5) is presented in the discussion of Chapter II as

Figure 2- c.

A. 3 Constant-Specific-Impulse Transfer

The well known equations for a conventional rocket must be inte-

grated in the analysis of a CSI transfer. That is

v = c in MR (A-8)

Since the variational approach is degenerate for this type of optimiza-

tion problem, .we shall simply apply the known result from the Hamil-

tonian approach of Chapter III, that thrust is either full on or full off fer

CSI vehicles in a linear field. Integration of equation (A-8) is over the

initial and final thrusting periods with a coast in between. That is

t I T

L = f v(t) dt+ f

0 t 2
v (t) dt + v (tl) (t 2 - tl) (A-9)
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subject to the boundary conditions (A-3)o
tation reduces to

L -- c (t 2 - tl) in tl _

This rather lengthy compu-

1 1 + aotl 2

mt I /
(A-10)

where a in the initial acceleration and m is the normalized flow rate
O

(i. e. m = 1). Some additional algebraic manipulation allows (A-10)o
to be cast in the form

mL _ (_'nT+ m_ - l) in ml + (i - m I)2 (A-I i)
C

where

m I = 1 -mt I (A-12)

From the work of Chapter II observe that for m a positive number

a = mc
O

o

P = +i mc 2

2

(A-13

(A-14)

Thus 2
a

o
m -

2p

(A-15)

c - 2p (A-16)

a
o

Equation (A-II) may now be written in terms of initial acceleration_

power, mass_ and the dimensions of the problem, L and T.

3
a L

O

2
4p

In the VSI case a was
O

. + m21 - in m I + (l-m 1

\ 2p (A-17)

6L
Let the CSI initial acceleration be an

T 2

unknown multiple of that value

a
o

6L

=XT2
(A-18)
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Further, define a parameter R.

R _" 18L 2 (A-19)
pT 3

Substituting (A-18) and (A-19) into (A-17) one obtains

1 R2 3 ( x 2 2 0 ml)2x = - R + m 1 - in m 1 + (1 -
(A-20)

From the condition that the velocity change must be the same for both

thrusting intervals if boundary conditions are satisfied, the final mass

ratio is
2

i___) (A-21)
MR = ( ml

Therefore if m I is a maximum, mass ratio is a minimum and likewise

for the acceleration integral.

Using equation (A-20), solve for x such that

_m
1

-0

Ox

_m I

_X

-0. The result is

(A-22)

when

1
R x (_-R x+ 2 in ml) = 0 (A-23)

x = 0 is a trivial solution and the desired solution is

4
x - in m I (A-24)

R

2
x = - in MR (A_25)

R

If equation (A-24) is substituted into (A-20) the result is

1)3 216 (In m + (I - m_) in m I + (i - ml)
3R

=0

(A-26)

The transcendental equation (A-26) is the relation between m I and R

for optimal CSI operations in field-free space. The optimum initial
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acceleration is given by (A-24) or (A-25). Equation (A-26) is plotted

in Figure 2-d. It is observed that CSI control always uses more pro-

pellant than VSl control. Also plotted in Figure 2-d is the CSI curve
6L

for a° T2 (i. e. x = i). This value of a° is considerably more expen-

sive than a transfer with a° ao (opt) Figure A-a contains plots of
the required coast time for CSI control. These are obtained by solving

equation (A-10) for (t 2 - tl )/ T in terms of m I and R. Again the work
involved is substantial.

Observe that for the case where

m I = 1 - _ (A-27)

where E is a small quantity, equation (A-27) may be substituted into

(A-26) and the resulting expression solved for m I by neglecting higher
order terms.

3R
ml= i---

16
(A-28)

By approximating in m I as

in m I = -c

one obtains

(1 + 1/2 ( + ...... ) (A-29)

Xopt = 3/4 (A-30)

Therefore, for transfers such that the propellant consumption is

small with respect to the total initial mass_ the optimum initial acceler-

ation for CSI vehicles is approximately three-fourths of the correspond-

ing optimum initial acceleration for VSI vehicles.
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APPENDIX B

ADJOINT SYSTEM OF DIFFERENTIAL EQUATIONS

B. 1 Introduction

The purpose of this appendix is to review briefly the concept of the

adjoint system of differential equations and to illustrate its use in a

simple guidance problem. Although the concept is not new_ it has not

been used as a standard engineering technique in guidance and control

problems until very recently. For solution of the two-point boundary

value problem which occurs in the navigation and guidance of space -_

craft however_ the method of adjoints is a particularly useful tool.

The development in this section is not intended to be rigorous and

exhaustive but merely illustrative of the method used throughout the

thesis. The material is taken primarily from the lecture notes of

Professor Frank D. Faulkner of the United States Naval Postgraduate

School.

B. 2 Method of Adjoints

Consider the following ordinary scalar differential equation_

x + 3x + 2x = f(t) (B-l)

which may be used to define the operator

d 2 3d
L(x) = (_+-- + 2) x = f(t) (B-2)

dt 2 dt

where f(t) is an arbitrary but known function. In a manner closely re-

lated to the method of variation of parameters_ form the integral

T T

J = f .A.L(x) dt = f J_.f(t)dt (B-3)
0"• 0

where -A_ is an unspecified function which will be chosen later to satisfy

certain boundary conditions in addition to a functional relationship. In-

tegrating equation (B-3) by parts to eliminate the derivative of x from

the integrand_ one obtains
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T T

J=(xx÷3 x- k )lo+f
0

If _A_ is chosen such that it satisfies

d 2
L*(A)=(

dt 2

x( j_- 3j< + 2]k_ ) dt

(B-4)

3d
+ 2) Jk = 0 (B-5)

dt

then the definite integral J is a function only of the first term on the

right side of equation (B-4). The operation of integrating by parts to

eliminate the dependent variable from the integrand defines the adjoint

operator L*. If L* = L the system is said to be self adjoint and has

some very useful properties. However, these are of no concern at the

moment.

A general solution to the adjoint equation (B-5) is

j__= C 1 et+ C 2 e 2t (B-6)

Suppose that the desired quantities are x(T) and x(T) and that x(0) and

x(0) (i. e. two constants of integration associated with the original dif-

ferential equation) are known. Equation (B-4) may be rewritten as

[Jk_: + (3A_ - Jk)x] = [ Jk£+ (3A- j_)x] +
t=T t=0

T

f Af(t) dt
0

(B-7)

If one specifies that

J_(T) -- 1 (B-S)

3 J_(T) - j_(T) = 0 (B-9)

then equation (B-7) gives for x(T)

T

x(T) = [ kx + (3A -/_) x] + f ]_f(t) dt (B-Z0)
t=0 0

The constants in equation (B-6) may be evaluated from the boundary

conditions of the adjoint variable, equations (B-8) and (B-9)o Designate

this solution J_ i" By performing the algebra one obtains

A1 = 2e 2 (t-T) _ et-T (B-II)
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Equation (B-10) may now be solved explicitly for x(T).
T

x(T) = (2e-2T - e-T) x0 + 2(e -2T - e-T) x 0 + f ]_'if(t) dt

• - 0 (B-12)

To obtain x(T) it is necessary to specify different boundary condi-

tions for j_.. Designate the solution satisfying these conditions as J_. 2"

J__2(T) = 0 (B-13)

3]_2(T) - J_2(T) = 1 (B-14)

By solving equation (B-6) subject to the boundary conditions of (B-13)

and (B-14) one obtains

]__ = et-T _ e 2 (t-T)
2 (B-15)

Inserting this result into equation (B-7) yields for x(T)

T

x(T) = (e -T - e -2T) x 0 + (2e -T - e '_2T) x 0 + fA 2 f(t) dt

0 (B-16)

The preceding development illustrates the general technique to be

used. However_ in order to more closely approach the formulations

used in the thesis_ it is convenient to write the basic second order dif-

ferential equation_ (B-l),, as two first order equations.

x : y (B- 17)

y = - 3y - 2x + f(t) (B-18)

Associate with the two equations two sets of adjoint functions ]k_ il and

]_i2 where the subscripts 1 and 2 refer to the associated equation and

the subscript i will refer to the boundary conditions which will eventually

be assigned to the A'So The integral J may now be formed.

T T

= f A il (x - y) + Ai2 (y + 3y + 2x) dt = f A.i2 f(t)dt
0 0_ (B-,19)

Integrate by parts to obtain

T T

J= (A_ilx+Jii2Y) 0-/ x(Ail - 2 __i2 ) + y ( fl_i2
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In order to eliminate the integral term it is clear that the adjoint vari-

ables must satisfy the relationship

iil- 2 Ai 2 = 0 IB-21)

- 3 Ai2 +All = 0 (B-22)

By reducing the two equations to one second order equation and solving

subject to the boundary conditions

"]_iI (T) = 1 (B-23)

and

_12 (T) = 0 (B-24)

3_21 (T) = 0 (B-25)

]k22 (T) = 1 (B-26)

it is apparent that the adjoint system of equations (B-21) and (B-22) is

identical with that obtained by the first formulation of the problem.

In general, if any set of first order differential equations may be

written in the form:

x 1

°

X
• n

"xl]
• I

A_ .

x
, n_

i •

fl (t)

,

Ifn(t) 

(B-27)

or equivalently

x - Ax = f(t) (B-28)

Then there exists a set of adjoint functions satisfying the relations

J_÷._A;O n• (B-29)

such that

(B-30)A_(T) : I n

T

x(T) : A (t 1) x(t 1) + / ]k(t) f(t) dt (B-31)

t 1
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where J[ (t) is the n by n matrix of adjoint functions, A is the n by n

matrix of coefficients in the original set of differential equations and

In is the n by nidentity matrix.

Unfortunately, in most problems of interest the adjoint functions

cannot be obtained in closed form and it is necessary to integrate the
2

n equations of (B-29) backwards in time from T to tI numerically_

using (B-30) as the initial condition.

B. 3 Use of the Adjoint Method in a Simple Guidance Problem

In this section the set of adjoint functions for a power-limited

space vehicle in two dimensional field-free space will be developed

analytically. The purpose is twofold: i) to further illustrate the tech-

nique of section B. 2, and 2) to provide a simple analytic example for

use in illustrating the guidance methods expounded in the body of the

thesis.

The fundamental guidance equation for thrust-limited vehicles has

been defined in earlier sections as

tf

5sf= A t 6s t + f .A.B 5f_dt (B-32)
t

For an actual interplanetary transfer the ._. matrix will be obtained

simultaneously with the desired trajectory_ In any events if the tra-

jectory is known the adjoint functions are also known or may be easily

determined. To illustrate this assume a transfer in field-free space

such that motion is along the positive x axis commencing from rest at

the origin at t = 0. At t : tR the thrust is reversed to effect rendezvous

with point xf at time t = tf. See Figure B-a.

Y

t = 0 t = t R t = tf

0

Figure B-,a

X
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The engine produces constant thrust along the nominal trajectory (which

is not optimum). Presumably the engine must be controlled in some

way to provide steering but it is not necessary to specify the method
of control in order to determine the _ matrix.

The equations of motion and constraint are:

x = v (B-33)
X

y = v (B-34)
Y

v x = a = 2p/cm (B-35)

v = 0 (B-36)
Y

m = -2p/c 2 (B-37)

where 2
-mc

p - - (exhaust power) (B-38)

c = exhaust velocity

Since the velocity and position along the nominal trajectory are easily

computed as functions of time by direct integration, they may be con-

sidered as known functions and we may proceed directly to the varia-

tional equations which are of primary interest. Taking the variations

of equations (B-33) through (B-38) yields

5x = 5v (B-39)
X

5y = 5v (B-40)
Y

_ 2p 5m + 15Vx 2 -- 5( 2p ) (B-41)
cm m c

5v = 0 (B-42)
Y

= 0 - 5(z-_P_.) (B-43)5m

C --

These may be formed into the matrix equation (B-28) ,

5s_ = A 5s + 5f_(t) (B-44)
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or

"0 0 1 0 0

0 0 0 1 0

0 0 0 0 -2p/cm 2

0 0 0 0 0

0 0 0 0 0

6s +

0

0

I S(2p/c)

0

-5(2p/c 2)

(B-45)

The column vector containing the power and exhaust velocity varia-

tions corresponds to the arbitrary forcing functions, f(t), of section B. 2

and to the product B 6f in the general guidance problem. They may be

written in any manner convenient for the investigation at hand. They

are of no further concern at the moment and will be carried along as

BSf.

The adjoint functions may now be determined by direct integration

of equation (B-46).

_+ J_. A : 0 5 (B-46)

J_.(T) : 15 (B-47)

Expanding the above and integrating the twenty-five equations one ob.-

rains

1 0 (tf-t) 0

_(i mf ____) ]-+ In t > t R

elim 12mf mf m R
+ t<t

1 mR --rff .... in l=n--_f

0 1 0 (tf,-t)

0 0 1 0 -c

0

I 1t>tR
2 1 1 )rB R mf m t < t R

0 0 0 1 0

0 0 0 0 1

(B-48)

Thus the adjoint set has been determined for a simple case and may

be used in the study of guidance techniques.

107



APPENDIX C

PROPERTIES OF THE FUNDAMENTAL

GUIDANCE EQUATION

C. 1 Summary

The contents of this appendix include discussions relative to inter-

changing the control vector and relative to properties of the adjoint set.

In the absence of control perturbations the adjoint set alone describes

the effect of state perturbations and thus may be called the "state tran-

sistion matrix". Several of its interesting properties are discussed.

Proof of singularities in the guidance equation is presented in

section C. 5.

C. 2 General Remarks

To provide a better understanding of the methods used in the solu-

tion of the equations of motion, and to show the relationship between

• trajectory determination and guidance it is beneficial to examine vari-

ous formulations of the variational equations of motion and the con-

straining equations.

A by-product of using the adjoint method with the calculus of varia-

tions to find an optimum trajectory is the solution of the adjoint set of

equations_ Physically the adjoint set represents "sensitivity" coeffi-

cients or "influence" functions which permit the investigator searching

for a trajectory to determine the changes in trajectory parameters

which will move the solution in the direction of the desired optimum.

It is interesting to note that along the optimum trajectory the Lagrange

multipliers are linear combinations of the adjoint variables. From

the viewpoint of one searching for a traject.ory, the adjoint set has

served its purpose once the optimum trajectory is determined. How-

ever, for the guidance analyst the adjoint functions serve a most useful

purpose by showing the effect of spacecraft perturbations on the final

state of the vehicle.
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C. 3 InterchanGing the Control Vector

The equations of motion and the mass rate equations, expressed

in a nonrotating frame with origin at the central body, are

r = v (C-l)

//

v = ----_ r + a (C-2)
3

r

m = grn (m_ a) (C-3)

or m = gm (f) (C-4)

The variables m and a have a functional dependence which must be ex-

plicitly taken into account. In the subsequent discussion only the VSI

case will be derived since CSI control follows an analogous argument.

The relationship between m and a may be written in any manner

which is convenient to the argument at hand. If one is interested in the

effect of acceleration changes irrespective of their cause then write

2 2
a m

m - (C-5)
2p

The analysis of Chapter II shows that equation (C-5) is the correct

form for mass rate. By taking the first variations of equation (C-I)

through (C-3) the state variational equation is obtained

5s = A 5s + B 5a (C-6)
.-- a -- a --

where

A

a  303
T oT

B

a
13

(C-7)

(c-8)
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where the pre-subscript denotes that a is the control. The submatrices

of A and B are the three by three nu]l matrix 0 3, the three by three

identity 13; the three by three symmetric matrix of gravitational grad-
ients G; and the three by one null vector O. If the adjoint set for equa-

tion (C-6) is formed such that

_A= -_A (C-9)

A.. (tf) = I

then the solution,_A., must have the form

a -A- =/-/_ 21 -/_ 22 0

L OT oT _ 3

(C-10)

(C-11)

where the matrix is partitioned into three by three submatrices, three

by one vectors and a scalar, -A- 33.

The form becomes apparent when equation (C-9) is expanded and an

initial condition is applied. Notice also that for the form (C-II) to

exist it is not critical thatYk(tf) = I, only that at some time t,_(t) =I

The expansion of (6-9) yields

-_ii =Y_I2 G (C-12)

-/_ 12 = --A-11 (C-13)

"A-13 = 0 (C-14)

-_21 =A'22 G (C-15)

A-22 = -A-21 (C-16)

0

_A_23 =O (C-17)

A T W (C- 18)-- 31 :J_-32 G

T (C-19)
£T2 = -_A_31

- a2m _A_ (C-20)
-_33 p 33
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The form of equation (C-II) is assured if at some timeJ_ = I.

Now rewrite the functional dependence

f

a -
- m

of a and m as

(c-21)

f2

2p
(C-22)

where again f, m and p are per unit initial mass.

must be modified to

- olI i3 13 O
fA = _- 0 3 -

o_T

I -
O 3

1
fB : -_ 13

ofT

P _

where the subscript denotes that f is the control°

differential equation is

The A and B matrix

(C_23)

(C-24)

The state variational

5s_ = fA 5s_ + fB 5f_ (C- 25)

Clearly the optimal trajectory must be independent of the particular

control variation used in the computation scheme, That is_ if the varia-

tional problem for computing trajectories is solved usingf as the con-

trol, it must result in the same trajectory that would be obtained if a

is used as the control Thus, two different formulations are available

which may be used at the discretion of the investigator. Since the cost

has been specified as a2/2 it is more convenient to use a as the control

for computing trajectories. Nevertheless_ the use of f as a control has

important significance.

The adjoint set which corresponds to using f as the control will now

be determined. Expanding(C-9)using(C-,23) one obtains differences

from the set (C-12) through (C-20) only in the last column of the solu-

tion ,A_. That is
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a

£ 13 --A_ 12-_m (C-26)

a

- -- (C-27)_-- 23 _22 m

-_33 = 0 (C-28)

For boundary conditions__ (tf) = I. the solution has the form

-A- 11 -A- 12 -/__.13"_

f :IA21J 22 -213JLOT oT " (C-29)

The solutions a_ and fJ_ differ only in the last column° The remaining

numbers of the array are identical for each point in time°

The physical significance of this difference is apparent from the

following physical reasoning. Consider the adjoint set as an array of

partial derivatives_ If__ (tf) = I then the last column is

i

J 13

-_23

-A-33

a r (tf)

am (t)

a X (tf)

m (t)

a m (tf)

0 m (t)
\

(C-30)

If _a is the control then one should expect A13 and_A_ 23 to be null vec-

tors, since for a given acceleration program variations in mass can-

not affect the end point in position and velocity. However the end point

for mass must change because it requires a different amount of pro-

pellant for different size vehicles.

If f is the control and the thrust program is given, then changes in

mass will affect the end points in position and velocity due to the change

in acceleration. For a given thrust program the final mass, however,

can change only if the initial mass changes, therefore_A. 33 = i.
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It is concluded that the control vectors 6f and 6a can be interchanged

inthe guidance equation simply by changing the last column of the ad-

joint set and changing the matrix lB. Along the optimal trajectory all

of these functions are known thus the interchange can be easily made at

the discretion of the investigator.

The purpose of interchanging control vectors is simply stated. Com-

putation of trajectories is most conveniently carried out with a as the
control_ due to the formulation of the cost. Assume however, that it

is desired to investigate the effects of changes in engine performance

or to investigate variables other than a as quantities to be measured.

Then it is convenient to writes from Chapter II

then

f = mc (C-31)
o

5f = m 6c + c 6m (C-32)

or 6f = [cmI3]

-.2pFurther_ let f -
- 2

C

61_/I (C-.33)

c (C-34)

2c 2ccT 1
then 6f - - 6 c (C-35)

- c2 c 2 -
or

2
6f -

- 2
C

2pL6p c 2 13

c 3- c 2
(C-36)

If in equation (C-25) or in the guidance equations 6f is replaced by

either (C-33) or (C-36) it is possible to study the effects of the par-

ticular variations represented without computing a new adjoint set.

The ability to interchange control vectors at will_ without requir-

ing a complete new set of computations makes the fundamental guidance

equation a very powerful tool.

C. 4 Properties of the State Transition Matrix

If the fundamental guidance equation is written for two different

times t = t. and t = t. and subtracted_ then
1 j
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or

-/_(ti) 5s i = _A (tj) _s j +

ti

f J_B 6__adt

tj

5s. = T.. 5s. +
--1 lj --j

(C-37)

t,

1

_i (ti) f ./_B 5a dt (C-38)

tj

where

.= A: 1
Tij (t i) A (tj) (C-39)

In the absence of control perturbations, T.. completely describes the
D

transformation of the state vector at t. into the state vector at t.. Thus
j i

T.. is called the "state transition matrix". It is necessary to show
ij

that T.. is nonsingular. It is desirable to show that it canbe inverted by
ij

inspection and that T.: 1 = T.o. This last property is readily observed by
lj jl

taking the inverse of equation (C-39).

-i

_ _ 1A(Tij) I = (J_i j) (C-40)

(Tij)-I = Tji =_A.j 1A_ i (C-41)

To examine the other properties, it is necessary to look first at.A..

From section C. 3 write A in its general form

-A- i i -A-12 -A- 13]

J_: [ "A-21 J_22 J_23 I (C-42)

[

Equation (C-42) is to be understood as representing both the adjoint set

with f as control and the set for a as control. The last column takes on

the value appropriate to the control.

Now, partition J_ and consider only that portion defined by

All J_12 ]
= (C-43)

Hj LA21 A22
J
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where the subscript refers to time t.. The differential equations for
J

this subset of _A_ are reproduced from section C. 3.

X 11 =_A_ 12 G (C-12)

12 = -A_ 11 (C-13)

21 =_ 22 G (C-15)

fk 22 = -_ 21 (C-16)

Observe that these equations are independent of the control and are

completely specified by the physical path and the boundary conditions.

Using C-13 and C-16_ H. may be rewritten as
J

I -'/_-12 j_"12 I (C-44)
Hj = -J_ 22 j_ 22 j

Now define a new matrix H.*.
J

I -/_12 J_22 112 _ 22
(c-45)

H.* and H. are related by
J J

(C-46)

where

P (C.-47)

P is a skew symmetric matrix and possess the properties:

p2 = -I

pT = p-i = _ p

(C-48)

(C-49)

Since in equation (C-46) t. is an arbitrary time along the trajectory,
J

the subscript may be dropped and H *T considered as a time varying

matrix.
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Differentiating:

H*T = H P (C-50)

H,T= Hp (C-51)

From equations (C-12) through (C-16) and (C-44) it is possible to

write

where

H + HA* : (--)6 (C-52)

[0: 1A* : (C-53)

O 3

Substituting (C-52) into (C-51) and using (C-50) one obtains

I_ *T = + H *T P A;',' P (C-54)

Multiplying out the known product yields

PA* P : A *T (C-55)

since G is a symmetric matrix. Thus the transpose of equation (C-54)

is

H* : A* H* (C-56)

Comparing (C-52) and (C-56) it is observed that H and H* satisfy the

adjoint-fundamental relationship mentioned in Chapter III. That is

or integrating

d
(H H*) = 0 6dt (C-57)

* . H",: (C-58)
Hf-, = Hj J

where

(c-59)

(c-60)

H(tf) : Hf : 16

Substituting equation (C-50) into (C-58) and Using (C-49) obtain

-eH_r---_ pHT
J J
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Using (C-59)

H PH I= P (C-61)
J J

Any matrix H exhibiting the property of equation (C-61) is said to

be symp!ectic and its inverse is given by

H -I = - PH T P (C-62)

The inverse of the submatrix H of _ has been obtained by rearrange-
-i

ment of the components. To obtain _ two cases must be considered:

the adjoint sets for the control a and for the control f.

If A = A., then
a

H _06]
a.A_ = (C-63)

O,T -A-33

where 06 is a 6 component null vector. Further

If_/_ = f A, then

a 1
-A--l= I -T --6 (C-64)L_o

fA = -- (C-65)

1

w_e_ea6 aeno_es\____{
Equation (C-65) may be written as the product of two matrices°

Then

-I 6 -H 0 6
fA: 6

1

E AEA-H- 1 06 -I _-_-6

f .A_- i =

o_ _ _o_

(C-66)

(C-67)
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L ]H-I -H-I-_--- 6

o%

since the second term in (C-67) is its own inverse.

now been inverted for all cases. Now consider T...
ij

T. =_-i A..
ij i j

(c-68)

Therefore _A_ has

(C-39)

For_/_ = _ , use (C-63) and (C-64)
a

ForY_ : f_A_

Hil Hj 06 j

I
T.. = ..... (C-69)

a ij _ 6T .A_33 jO i j__ 33 i
I

, use (C-65) and (C-68)

= IH _ 1 Hj

fTij _

-- 6i -- 6j

1

(c-7o)

Finally it is necessary to show that T.. is nonsingular. To do this
lJ -I

it is sufficient to show that the determinant of H. H. is never zero and
i j

that A_ is never zero.
33

From equation (C-20) it is apparent that if _A_33 (0) = 1 it increases

monotonically, thus is never zero.

Now examine the determinant of

H_IH.
i j

From (C-61)

det HPH T = det P = 1 (C-71)

Since the determinant of a product is the product of the determinants

(det H) 2 = 1 (C-72)
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From equation (C-62)

det H-1 = det (-PH TP)

-1
det H = det H

since det (-P) = (-1) k det P = 1

(C-73)

(C-74)

(C-75)

where k = 6 is the order of P.

Since the subscripts i and j are completely arbitrary and since H

is continuous,

det H. -1 H. = det H -1 H = 1 (C-76)
1 j

Thus T.. is nonsingular.
ij

C. 5 Singularities of the Guidance Equation

Solution of the guidance equation for a control program which will

satisfy certain terminal conditions invariably results in the inversion

of a matrix integral expression. In section 3.8 the solution for FTA

guidance requires such an inversion, namely
-i

F; 1M- 1 = _A.* B B T .A. ,T dt (C-77)

In this section the proof will be given that M is not singular for

(if - tl) > 0 but that the corresponding matrix denoted by Mo_ with_A_

in place of _*, is singular, in the case of unconstrained control pro-

grams, for all values of t I along the optimal trajectory. We shall pro-

ceed to prove that M is singular and by induction show that M is not
O

singular.

The following proof of the singularity in M o
James Potter.

was suggested by Dr.

If M
O is singular then there is a nonzero vector P--o such that

Mo : o (c-78)
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M is symmetric thus it is also true that
O

T = 0 (C-79)
Po Mo

and

T : 0 (C-80)
P-o Mo ---Po

This implies that

tf

0 = f --opt _A_BB T AT_po dt (C-81)
t

1

However equation (C-81) is the integral of the square of the length of a

vector

tf 2

f IBT AT_o I dt : 0 (C-82)

tI

Thus for M
O

tot integrand of (C-82) be zero.

B T (t)

for allt I< t < tf.

That a vector Po

to be singular it is necessary and sufficient that the vec-

A T (t) P-o = 0 (c-83)

exists for the optimum trajectory such that equa-

tion (C-83) is satisfied may be shown by application of the Pontryagin

maximum principle for unconstrained control. The Pontryagin maxi-

mum principle asserts that if the final value, S, of some combination

of the state variables, x, are to be a maximum or minimum with re-

spect to the control variables, y_; that is,

min S = d T xf (C-84)

Yi

then the desired path will be one such that the gradient of the state

velocity, x, in the vector space of all admissible y__,

x = g (x, y, t) (C-85)
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will be orthogonal to a vector p which satisfies the differential equa-

tions adjoint to x = g (x, y, t) and such that the final value of p is

pf = -d + l,'f (C-86)

where d i = 0 for components of the state vector which are fixed at tf

and p. = 0 for components of the state vector to be minimized or max-
if

imized.

Thus to satisfy equation (C-84), it is necessary and sufficient that

where

T [ a(g(x--'Z' 9).1
E = o (c-87)

ay

x = g (x, y, t) (C-85)

P__= - E (c-88)
ax

pf = - d + £f (C-86)

A proof of the maximum principle is given in Appendix D.

Application of equations (C-86), (C-87), (C-88) to the guidance

problem in this thesis reveals that

(C -89)

• = -A T (C-90)p p

T
p__ B = 0 (C-91)

where A T and B are the matrices of partial derivatives in (C-88) and

(C-87) respectively.

Since p satisfies equation (C-90) and also A T satisfies (C-90), a

solution of p_ is

P = j_Tpf (C-92)
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Then substituting into equation (C- 9 i)

T
pf ._B = 0 (C-93)

for allt I< t< tf.

t I is arbitrary

Thus o_ is a null vector of M . Furthermore_ since
O

M (tl) pf = 0 (0 < t I < tf) (C-94)O

To show that M is not singular it is sufficient to show that every

null vector of M ° satisfies the boundary condition on p, equation (C-86).

This sufficiency condition is easily verified by noting that the final

element of p_f is invariant and that M may be obtained from M by de-O

leting the last row and last column of M . In general, if _A_ is inter-
o T T

preted as the nonsingular transformation that transforms pf into p
T.

and if p_ is a null vector of B because of the component Pif' then delet-

ing the ith row of A_ to produce z%* destroys the transformation which

carries Pif into p_.

The fact that only the last row of .A. need be deleted is a con-

sequence of the fact that only the last component of the final state vec-

tor, mf, has been maximized in obtaining the optimum path. Therefore_

we assert that if every null vector of M satisfies equation (C-89),
O

the M obtained in equation (C-77) is nonsingularo

Let us prove then that all null vectors of M satisfy the boundaryo

condition° For the problem in this thesis £3 is a seven by three matrix

of rank three and contains zeros in the first three rows. By virtue of

the rank, the three columns of B are linearly independent° Further_

since B is of rank three there are four linearly independent vectors

which satisfy (C-91) and thus are null vectors of B. Three of the four

vectors may be chosen to satisfy (C-91) by virtue of the three rows of

zeros in B. These vectors do not satisfy (C-92) and (C-93) and there-

fore are not null vectors of M The fourth vector must be a null vec-
O"

tot of M since the three columns of B and the four null vectors of B
o

form a basis in seven dimensional vector space and six of the vectors

are not null vectors of M . This vector is unique and must satisfy
O

(C-89) through (C-93).
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The proof is thus complete since all vectors may be written as

linear combinations of the vectors in the basis.
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APPENDIX D

PONTRYAGIN'S MAXIMUM PRINCIPLE

D. 1 Introduction

In this appendix a derivation of Pontryagin's maximum principle

is given which is applicable to the problem of the thesis.

Consider that the cost function S is some scalar function of the

final state variable, xf. It is always possible to cast a problem into

this form by redefining variables. The control vector will be denoted

by a generalized vector u, which is bounded by certain constraints. In

addition, the solution must satisfy boundary conditions on some of the

state variables. The desired solution is the optimal control, u °, which

will maximize the cost and satisfy all constraining conditions.

D. 2 The Maximum Principle

Assume that the state variables may be written in the form

x = g (x, u) (D-l)

and that the solution is to satisfy the final boundary conditions

(xf) = O (D-2)

The cost function may be written as

S = d T x f + _vT (D-3)

where d is a known vector and v is an unknown constant vector.

Then small changes in the cost due to changes in state are given by

where

5S = dTSxf+ _vT 8_ 5xf (D-4)

8xf

8 xif

i or 0 (D-5)
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Equation (D-5) is 1 for fixed boundaries; 0 for unspecified boundaries.

The variables adjoint to (D-I) are given by

P = - ATp: - \ Ox ] (D-6)

p_ (tf) = pf (D-7)

The vector p_ is frequently called the "costate".

Assume that an optimal control, u °, is known.

changes 5u, the state must change by 5x. Then

Then for small

6x =g(x °+ 6x, u °+ 5u)-g(x °,u °) (D-8)

Consider the term

dd_(p_T6x) = p_T6x+i T6x
dt

(D-9)

Applying (D-8) one obtains

"T
p 6x-

dt
d (p_T5x) - p_T [g (xo + 5x, u° + 5u)-g (x°, u_°)]

(D-10)

Integrating (D-10) yields

f

f p_'T 5x dt = p__T6x - _pT [g (x o + 6x, u ° + 6u) - g (x °, u°)l dt
0 0 0

(D-11)

If the initial state .boundary is fixed, 6Xo = 0 and the first right hand

term is

6S : PT 6xf (D-12)

provided pf is chosen such that

T d T
Pf=_

+ uT O (_ (D-13)

axf

The right side integrand may be expanded in a Taylor series around the

optimal trajectory if the variations due to control and due to state are
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separated. That is

g(x °+ ax, u °+ au) - g(x °, u__°) =g(x °,u ° + 6u)-g(x °,u °)

+ a__a__[_g(xo, uo + 5u)] 5x + remainder
ax

(D-14)

If the adjoint relationship, (D-6), is used on the left hand integrand

of (D-II), the term may be rewritten as

tf::

pT 5x dt : - f pT a_a__ig (x o, uO)]Sx dt (D-15)
0 0 ax

Then substituting (D-12), (D-14) and (D-15) into (D-II), the result is

tf

5S= f pT[g (x o, u o + 5u) - _g (x__°, u°)] dt
0 -

+ 0f PT_a_x[g (x°' u° + 5u) - g (x °, u°)] 5xdt (D-16)

Consider the first integrand in (D-16). If S is a maximum, then any

allowable change 5u must cause 5S to be negative. Therefore for all

0<t<tf

T " o
p [g (x °, u + 5u) g (x °, u °) ] < 0 (D-17)

In considering the second integrand it is argued that admissible

control changes 5u, can produce only a small variation in the deriva-

tive term such that its product with 5x is second order or higher. Con-

sequently the second integral and all higher order remainder terms of

(D- 14) are :neglected.

Therefore (D-17) represents the sufficient condition for an optimum,

A necessary condition is

Z o o
p [g (x , u + 5u) - g (x °, u°)] <_ 0 (D-18)

The implication of (D-18) is that for all points on the optimal tra-

jectory and for all admissible functions u, pTg must be a maximum.

Replacing i_with x_ notice that the scalar product of p and the state

velocity must be a maximum.
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If the control is unconstrained, then a necessary condition that
T

p g is a maximum is that

ag
a (pTg)_ = 0 =_pT

au au
(D-19)

From previous work

_g
B-

_u
(D-20)

Thus a necessary condition for a maximum is

T
p B = O (D-21)

It is possible to derive the Hamiltonian formulation used in Chapter

III by introducing a slightly different cost function S'. In place of (D-3)

let

tf

s, = -J h (u) dt + _vT _ (D-22)
O

where h(u) is some function of the control. Then

tf

8S i- ah 8udt + v T a_' = _ 5xf
o_

au axf

(D-23)

where again

0 ¢i

a xif

-lorO (D-5)

Equations (D-6) through (D-II) hold and (D-23) may be written as

6S I =

tf

/
0

In(u° + 6u)-h (u°)]dt+ pT Sxf (D-24)

provided that p_f is chosen such that

T T
p_f = v (D-25)
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If D-24) is substituted into (D-II) along with (D-14) and (D-15) , the

result is

6S' = f { pT [g (x °, u U + 6u) -g (x u, u_°)]+ [h (u ° + 6u) -h (u°)]_
dt

+ higher order terms (D:26)

Equation (D-26) is analagous to (D-16). A sufficient condition that S'

be a maximum is that for all admissible control changes, 6u

T o
p [g(x__ °, u + 6u) - g (x °, u°)] + [h (u_° + 6u) -h (u°)] < 0 (D-27)

The implication of (D-27) is that for all points on the optimal trajectory

and for all admissible functions u ° (pTg + h(u) ) must be a maximum.

Using the VSI vehicle as an example

2

h(_a) - a (D-28)
2

Then using (D-I) define

2
aH = + pTx (D-29)

2

For the linearized guidance problem of Chapter III, the vector i

was interpreted as the velocity of the state error at the final time.

Since _ is a state velocity and p_p_fis the fina]_ value of the costate, using

(D-25)

2
H = a___ + uT _ (D-301

2

where for fixed boundary conditions

- I (D-31

Equation (D-30) is a linearized version of the general Hamiltonian

formulation but with a nonlinear cost.

D. 3 Optimization Criterion

It was briefly mentioned in Chapter V that the optimality criterion

for Pontryagin's maximum principle is more workable than the calculus
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of variations criterion. This remark deserves further discussion.

From the previous section it may be noted that the criterion for optim-

ality may be stated: "For admissible controlvarfations, the change in

the cost function must be zero or negative (positive) if the cost is max-
imum (minimum). Admissible control variations are those which

violate neither the boundary conditions nor any control constraint. "

In contrast to this, the calculus of variations criterion for optim-

ality is derived from the integral of the functional F used in Chapter V.

Referring to equation (5-18), for example, the optimality criterion may
be stated: "For admissible control variations and variations in state,

the boundary conditions must be satisfied and the cost must not change

to first order. "

Since the integral of the functional equals the cost, the form of

equation (5-18), rewritten here as (D-32),

tf tf

( ) 6m + ( ) 5a ] dt (9-32)

gives the impression that the criterion must hold for all arbitrary

variations in state and control. The implication is not true for the

problem of this thesis and is misleading at best because (D-32) does

not represent the first variation of the cost. It will now be '_hown

that although (D-32) is satisfied for all variations in state and control,

the optimality criterion can not be satisfied for all arbitrary state

variations.

Let the guidance equation (3 -27) be partitioned such that it con-

sis.ts of two equations

8 r * *
= J_tSst + f _A_BSa

5 f t

tf

8mr= 8£t + f -A-T B8! dt
t

(D-33)

(D-34)
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Using the expansion of the matrix _A_. (D-33) and (D-34) are

II [5r = J_11 Jk12 ' 5r + .; .A. B 6a dt

6v f .A.21 A_22jt 6v t t

(D-35)

tf

5mf = /k33 5rh t - f
t

Using the solution J_.

reduced further,

•A-33 _ _

33
2/m 2 from equation (5-25), (D-36)=mf

(D-36)

may be

2 2 tf
mf mf. T

6mf =--_- 5m t f _a 5_adt (D-37)

m t p t .-

For the criterion to be satisfied it is necessary that the final state varia-

tion 5sfvanish. Fi::stallo-wI°r }r_ _ to take on anonzero value but let 6m t
_v,,

equal zero. Then (D-35) and (D-37) become

tf

O = _+ f j__ B 6_a dt (D-38)
t

2 tf
mf

b = o f-_a T 5_a dt (D-39)

p t

From Chapter III it is known that all propellant optimal control varia-

tions which satisfy the boundary conditions are

5_a : BTj__ _,,..TM-I (?7 - __) -_a. (D-40)

Substituting this solution into (D-39) and expanding yields

2L ]mf f T 1 T 1
0- U__ M- __-2J-u_ M- _ (D-41)

P

However, along an optimal trajectory

TM-I __-2J = 0 (D-42)
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Thus to satisfy (D-39) it is necessary that

0 = __TM-I __ (D-43)

(D-43) does not hold in general. It holds only when the error _ is such

that a control change 5a orthogonal to a can satisfy boundary conditions.

Now consider a variation in 5rn

velocity. Then it is required that

but no variation in position orf

tf

2= f A*B6_ Ot
t

(D-44)

2 2 t
mf rn0- f
_7 f _aT 5a

m t p 0

(D-45)

A general variation 5a may always be written as

5a = B T j_,T = _ a (D-46)

Inserting (D-46) into (D-45) and (D-44) and solving, one obtains from

(D-44)

__ = M -1 __ (D-47)

and from (D-45)

8m

p *_ - T]T= - 2J (D-48)

m t

Eliminating __

8m

t TM-I
P 2 - __ _ - 2J = 0 (D-49)

mf

Therefore there are no variations 5rn t which permit the boundary con-

ditions to be satisfied and which do not change the cost.

It is concluded that the calculus of variation criterion and formula-

tion can be misleading if not treated with much care. The Pontryagin

principle avoids the difficulty by making no explicit requirements on

state variations.
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APPENDIX E

STEEPEST ASCENT FORMULATION FOR GUIDANCE

E. 1 Introduction

In this appendix the guidance problem will be formulated as it would

appear in a "steepest ascent" trajectory computation procedure. The

steepest ascent method is characterized by a rigid control over the

step size between iterations° This step control is to prevent the pro-

cedure from violating linearity assumptions as it approaches the opti-

mum. Sophisticated techniques have been devised for automatic selec-
26

tion of step size. However, at some point the investigator must use

his experience and judgement to select a constant or matrix of con-

stants to insert in the selection procedure for step size. The author

is convinced that the additional complexity of rigid step control cannot

always be justified.

E° 2 Steepest Ascent Solution

For simplicity in illustrating the steepest ascent methods consider

only the trajectory problem for the unrestricted VSI mode of control°

In this problem it is desired that the optimal acceleration integral be

a minimum_

tf 2

jo / I °I dt
0 2

It is further desired that the change in the acceleration program from

one iteration to the next be such that

tf 2

k 2 = f l Sal dt (E-2)
0

where k 2 is a constant to be selected at the discretion of the investigator.

In order to satisfy, to first order, the terminal constraint _ 5a

must satisfy the relation
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tf
- _ = _A B 5a dt

0
(E-3)

where all variables are defined exactly as in Chapter III.

Define the new cost function J' such that

o T o tf tftf a a

,. r. -I ('o
where 7rI and __2 are constant Lagrange multipliers, a scalar and a

vector respectively.

For arbitrary variations in 5a, the first variation of J' must vanish.

Thus for

0
a =a+Sa (E-5)

where a is a nonoptimal program,

(E-6)

5 (6_a) f o

or

_B T .A *T
£2 - _a

5a = (E-7)

(1 - =1)

The multipliers may be determined by satisfying the constraint equa-

tions. First solve for -_2 through equation (E-3).

!2 : M -1 [(I - _i) __ - 7? ] (E-8)

where

tf

M = f Jk.$BB T j_T dt
0

tf

f JV"Bad 
0

(E -9)

(E-10)
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and

6a = - B T ./_,T M_ 1

Using (E-2)to solve for

(1-_'i)

1
- one obtains

(1-_'1)

a

(1-_'1)

(E-II)

(1__.1)2 = 2J - T/TNI-I __

k2 _ _TM-1 _
(E-12)

Or

k2_ _TM_1 _
(i-7rl) 2J- u_T M-1T/

(E-13)

where J is the acceleration integral for the nonoptimum program.

The factor (l--Z-_-_ is the step size control which must be deter-
-l-

mined by judicious selection of k 2. Observe, however, the result of

using (E-II) to evaluate the integral of a T 6a. This term is the cross

product in the expansion of la°l 2 by equation (E-5)

tf

/ _aT 6_a dt = - _/T M- I ! 1 (2J - q__T M- 1 U_U_)

0 1 -_I

(E-14)

O
As the program a approaches a , the difference, 6a, must vanish.

Likewise the error _ must vanish. From (E-14) either the step size

must approach zero or the term (2J - ?/TM-I ) must approach zero or

both. It is easy to show that both must approach zero. Consider

_ = B T _A.*TM-I_ - a (E-15)

Then

tf

f aTa dt= 2J - __TM-I__
0

(E-16)
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Clearly

tf

jTa a dt >_ 0 (E-17)

with equality holding only when

_a : B T A*TM-I_ (E-18)

Equation (E-18) holds only along the optimal trajectory. Therefore from

(E-13) it is clear that for (1_--=-_.) to remain finite, (k 2 - __TM-1 __)must
1

approach zero at leas_ as fast as (2J - __TM-I__). Since ]__I approaches

zero this implies that k 2 must be reduced to zero as the optimal path is

approached. One concludes that "steepest ascent", as formulated using
26

the usual technique , inherently converges slowly.

The approach in this thesis is to assume that as I__l becomes small

the step size will automatically become small without the arbitrary con-

straint imposed by k 2. Thus _1 is set equal to zero and the procedure

allowed to converge as rapidly as possible. The results appear to

justify this procedure.
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APPENDIX F

COMPUTATIONAL COORDINATES

F. 1 Introduction

In this appendix the computational coordinate system is derived

from the ephemeris data of the launch planet and target planet. In the

chapters describing the guidance equation and its uses, generalized

vector notation is used and the problem of coordinates does not arise.

The motion is assumed to be described in a nonrotating frame.

For computations, however_ it is necessary to be more specific.

The computational frame used in computer tests is a heliocentric frame

defined by the transfer plane and the initial point. The transfer plane

is the plane which contains the initial poin% the final point and the sun.

The x axis of the system passes through the initial point, the z axis is

northerly and the y axis completes the triad.

The objective is to describe the transfer plane and its coordinate

system in terms of ephemeris data. This data may be given in either

ecliptic or equatorial coordinates. The description of these systems

and the transformation between them is available in most basic celes-

tial mechanics texts and will not be reproduced here.

F. 2 Computational Coordinates

Designate the unit vectors in any system as i, j, and k and attach

subscripts to denote the system. For the computational system use

subscript c. Then, if the launch and target points are denoted by sub-

r_ L
i - (F-I)

--C

r L

KL X r_T
k - (F-2)

--c r--L × r__T I

script L and T respectively,

_ = k X i (F-3)J c -c -c
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The transfer angle, _, in the transfer plane is determined by

k sin
--C

r__L X r_T

rLr T

(F-4)

I k sin $I = sin
--C

(F-5)

The coordinates of the launch (initial) point are

xL}YL =

zL

(F-6)

The coordinates of the target point are

x l

Tj

r T cos _I

r T sin

0 c

(F-7)

Two additional parameters of interest are the inclination of the

transfer plane to the planes of the launch planet and the target planet.

If the northerly normals to these planes are denoted by k L and k T

respectively, and the angles by a L and a T respectively, then

= (F-s)cos aL kL kc

where

= (F-9)cos a T k T k c

r L Xr(L + 90 ° ) (F-10)

kL = r L Xr(L + 90 ° ) I

r T X r_(T + 90 o)

kT = r TXr(T+ 90 °) I

(F-II)
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From the preceding equations, numerical values of the coordinate

transformations (i. e. the orthogonal transformation matrix) between an

ephemeris tabulation and the computational coordinates can be com-
puted when the launch date and transler time are specified.
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APPENDIX G

COMPUTER PROGRAM

G. 1 Introduction

The FORTRAN program used to test the guidance theory is repro-

duced in this appendix. The input data format is given as well as the

units for input data.

There are a few areas in the program which can be made more

efficient, since testing is completed, however it operates quite satis-

factorily as presently written. The author is indebted to Mr. Krupp

for his magnificent efforts in writing this program.

G. 2 Input Format and Units

Nine data cards are required for each problem to be computed.

The format for each is 3F20.9. The following sequence and units are

required:

i.)

2.)

3.)

4.)

Initial position (A. u. )

Initial velocity (A. u./day)

Target position (A. u. )

Target velocity (A. u./day)

5. ) and 6. ) Estimated _ vector. For VSI control, both cards are

null vectors. For CSI control, card number 5 is the null

vector and card 6 should contain a number of the order of

maximum initial acceleration. The units are (A. u./day2).

7. ) a. Number of iterations desired
-4

b. Maximum initial acceleration in units of i0 go"

I. 2). For VSI problems use any large number.

C.

8.)

(Example,

Gravitational constant of the central body in units of

(A.u)3/day 2. For the sun this value is 0. 000295912.

a. Maximum time step desired (days).
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b. Earth gravity (A. u./day2). This value is 0. 494840.

c. Flight time (days) .

9. ) a. Exhaust power of engine per unit mass (A. u. )2/day3.

The conversion is: divide power in kw/kg by 3. 4653 X 104.

b. Switching number. (use 1.0).

The routine will accept as many problems of one type as desired. CSI

and VSI problems cannot be run together. Submit a complete set of

data cards for each problem.

G. 3 The FORTRAN Program

Except for subroutine DERV, the programs for CSI and VSI control

are identical. There is a subroutine DERV for each mode of engine

control. Select the routine appropriate to the problem and omit the

other. Selection cannot be made automatically with the current pro-

gr am.

The FORTRAN source program is reproduced on the following

pages. The generalized flow chart is presented in Figure G-a. Figure

G-b is the storage map for computer variables.
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J1 rl

2 r2

3 r 3

4 v 1

5 v 2

6 v 3

7 m

8

9

10

11

12

13

14

15 rlE

16 r2E

17 r3E

18 VIE

19 V2E

20 V3E

2 3

'_r1 71

'_r 2 772

z_.3 ' 7 3

'X_v1 74

_2 75

)Xv3 7 6

A m

Fig. G-b. Computer storage map.

4 5 6 7 8

t All

;lal

fa 2 •

_'a2 •;7

fmla[ *

fa. lal A16 • •
m

Am A17

-k

M11 " •

M16
o •

_le rIT _IT 7"I R Flag

_2e r2T _2T 7"2 _' I ;_vlm

_3e r3T _3T 7)3 a0 /z

_4e VlT _4T v4 al Amax

_5e V2T _5T 7"5 a2 Error

_6e V3T _6T! z)6 a3 Time

Switch

C

P

D flag

Step
Number

go

9 10 11

• A61

• • A66

• • M61

• • F._ *
66

12

A71

A77

12

24

36

48

60

72

84

96

108

120

132

144

156

168

180

192

204

216

228

24O
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LASEL

LIST

MAIN
BIMENSION W(12, 20), T(7, 8, 60)

B READ I, ((W{I, J), J=lS' 20), I=l, 7, 2}, W(8, 17), W(8, 15)

INPUT DATA, (SEE FORMAT}

LAUNCH (POSITION, VELOCITY}

TARGET (POSITION, VELOCITY )

ESTIHATED NU VECTOR
NUMSER OF ITERATIONS, MAX ACCELERATION, GRAVITATION CONSTANT

MAX TIME STEP, EARTH GRAVITY, FLIGHT TIME

POWER, SWITCHING NUMBER

I FORMAT(3F20.9)

NIT=W(7, 15)
W(8, 201=W(7, 19)Ii0000.0

!V(6, 17)=W(7, 16)*W(8, 20)
TRANSFER OF INPUT QUANTITIES TO FINAL STORAGE

w(8, 16)=2,0"W(8, 17)/W(6, 17)

COMPUTATION OF EXHAUST VELOCITY

Be 5 L=I- NIT
ITERATION LIMIT (NIT}

5 CALL CORREC(W, T)

CALL LAMTAB(W, T)
PUNCH 2, (W(5, I}, I=15, 20)

2 FORMAT(3E20.8}

GO TO 3

END
27
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_ LAMTAB
* LABEL
* LIST

SUBROUTINELAMTAB(W,T}
C SUBROUTINECOMPUTE.%,PRII'_TSbACKWARDINTEGRATE-i)LAN_DAHATRIX

DIMENSIONW(12, 20}, T(7, 8, 60), Q(10, i0)
L=w(8, 19}+.,O1

C L IS STEPNUMBER
DO20 LL=I, L
A=T(7, I, LL}*(T(7, 1, L+I)
IF(5*I(LL-1)/5)-LL+]) 6, 5, 6

C PAGESPACINGOF LAMBOAPRINTOUT
5 PRINT3
6 DOI_ I=l, 7

DO I0 J=l, 7
O(I, J)=O.O
DO10 K=I, 7

iO O(I, J}=Q(i, J)+T(I, K+I, LL}_T(K, J+l, L+I)
C INVERTEDFINAL VALUEOF FORWARDINTEGRATEDLAMLIDAHATRIX
C MULTIPLIED INTO LANBDA MATRIX AT EACH STEP

4 FC_R_AT(IO4X, F16.8)

3 FORMAT(1H12X4HTII'4E50X13HLAMBDA MATRIX)
2 FOP_iAT(1H ,F7.2, 7F16.8)
1 FORMAT(SX, 7F16.8)

PRINT 2

PRINT 2, T(I, I, LL). (G(I, i), I=1, 7)

PRINT i, ((_Q(I, J}, I=i, 7), J=2, 7)

20 PRINT 4, A

RETURN

END
3O
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coQr_Ec
LABEL
LI_T

SU3ROUTIN= CC)RREC(W, T)
SUBROUTINE COMPUTES NEW INITIAL VALUES FOR NEXT ITERATION

AND PRINTS FINAL VALUES OF INTEGRATED QUANTITIES
DIMENSION W(12, 20), Q(10, 10), T(7, 8, 50)
CALL [NTEG(W, T)
DO i0 I=l, 6

',,' ( _, 15):2.0
W(4, I+14)=W(1, I)-W(3, I+14)

COMPUTATION OF MISS VECTOR AT TARGET (TARGET XI)
t','(2 , I+14)=0,0

DO I_ 3=I , 6
W(2, 1+14)=W(2, I+I4)+W(I+5, J)_(W(I, J)-W(3, J+14))

TRANSFORMS TARGET XI TO EUUiVALENT LAUNCH ERROR (INITIAL XI)
1S O(I,, J)=W(I+5,. 3+7)

CALL INVERT(6, Q)
INVERSION OF M STAR MATRIX

DO 2? I=l, 5

.90 2,: J=], 6
20 ;';(5, _T+14)=W(5, t+14)-Q(I, J)*W(2, J+14)

COMPUTATION OF CORRECTED NU VECTtOR
3 FC_htAT(1H15X13HINITIAL STATE5XllHFINAL STATE6X12HTARGET STATEgX

C 3HETAllX9HTARGET XI8XlOHiNITIAL XI7XIOHNU X 10000)

2 FO'_UAT(1H ,7F17.0)
1 FORMAT(1HO/1HOgXIHJ53X12HASTAR dATRIX/1HOEI7,7,.6F17.6/(16X6F17o6))

A J='.'( 5, 3)/2.0
po,IMT 3

PR I ?.!T 2

DO 25 I=15. 20
XNU=".'(5, I }_10000.0

25 PRINT 2, W(1,I),.W(1,I-14),.4(3,I),W(3,I-14),W(4,I),,,,'(2,I),XNU
PRINT i, A J, ((W(I, J),I:6, ii), J=8, 13)

DO 30 I=l, 7

DO 30 J=l, 7
3:1; ©(I_ J)=W(J+5, I

CALL TNVERT(7, O
L=';_, 10)+1.01

DO 40 I=l, 7

DO 40 3=2, 8

43 T(I, 3, L)=Q(I, J-l)

T(7, I, L)=I.OIW(5, 7)

INVERS{ON OF FINAL VALUE OF FORWARD INTFGRATED LA,MbDA MATRIX

RETURN

E r,tD
4.6
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4_

¢-

C

C

INTEG

LA3EL

LIST

SUBROUTINE INTEG(W, T)

SUBROUTINE CONTROLS INITIAL VALUES FOR INTEGRATION

AND PRINTS OUT TRAJECTORY VARIABLES AT EACH STEP

DTZ.;F. hSION W(12, 20), D(12, 20), T(7, 8, 50)

DO 10 I=l, !AS

D(I, i)=_. :',

I:) w(I, I)=9.0

r)(' 20 ]:1, 6,

t.: I+5, I)=l.O

','.J l, I)=W(I, I+14)

2; "! 2, I)=W(5, I+14)

, i, 7)=i._

t'! 2, 7)=5.0

t" 5, 7)=1.0

V.' 12, 7)=i.0

t,I 7, lq)=O.O

W 7, !5)=I.0

',., _, 18)=2._

INITIAL CONDITIONS FOR INTEGRATION

CALL DERV(',,', D)

IF(W(7, 16)-4(6, 17)) 30, 30, 35

TEST FOR THRUST LIMITATION SWITCH POINT

3 ; ','(7., ].5)=:).F)

C_LL DERV(":, D)

35 _,-L=W(7, 18)

LIMITATION OF" INTFGRATIGN oTEP SIZE

3 FCR;.;AT(ImllIX4HTIMEBX12nACCEL_RATION7XRrtACCEL iviAG8X8HPOS1TIONgX

C 8HVELOCITYllX4HMASS13XSHGAM_'4A/26XRHX 10000/G8X9HX IO000/G)

2 F.n?:,:AT(1H ,F17.4, 6F17.7)

1 FO°"IATI1H ,17X, F17.7, 17X, 2Ft7.7)

rbO 70 I=l, 5::

Al: ;(_ !8)/W(£, 20)

A2=W(6_ 19)/W(8, 20)

A3=W(6_ 20)/W(8, 20)

AFt:D(5, 2)/W 8, 20)

GAM'--W(7, !6) W(6, 17)

_' (S, 19)=I

DO 40 K=!, 7

4i2 I(K, J, I)=V' 0+4, K)

IF(IJ" ((I-14 I0)-I+i) 46, 45, 46

PAGE SPACING FOR TRAJECTORY DATA

43 '°?!'_JT 3

4-600TN:T 2

PR!KT 2, W(5,1),AI,AM,W(I,I),W(I,4),'I(I,7),GAM

PRINT ], A2,W(I,2),W(I,5),A3,W(I,3),W(I,6)

[F(DFL+W(5, I)-W(7, 20) ) 60, 60, 50

TEST FOR END OF FLIGHT TIME

5"i DEL=Iq(7, 20)-'.q(5_, 1)

60 IF(DEL/W(7, 18)-,0001) 80, 80, 70

TEST FOR FINAL STEP LESS THAN .0001

7'-, CALL STEP(W, D, D/L)

80 RcTUPN

END

57
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* STEP
* LABEL

"_ L I<T

SUBROUTIP, E STEP(W19 DI, DEL)

C SUBROUTINE SELECT_ STEP S':/_J ON _ASIS OF INTEORATION

C ERROR ANt] THRUST LIMITATION SWITCH POINT

DINENSION .#I(240), Di(240;, W2(240), D2(240), W3(240), D3(240)

5 FLAG=WI(1751

C DEFINITION OF FLAG

DO iZ I:l, 240

O2(1)=Jl(1)

C,3(I )=Ol(I)

W2(I )=WI(I)

i0 W3(1)=WI(1)

C DEFINITION OF VARIABLES FOR TRIAL INTEGRATION

CALL RUNKUT(W2, D2, DELl

C TRIAL INTEGRATION
IF(FLAG-','/2(186)) 20, 15, 15

C TEST FOR THRUST LIMIT SWITCH OFF POINT DURING INTEGRATION
15 FLAG=O.O

GO TO 30

20 IF(FLAG->IINIF(W2(i86)-I.0, .5) ) 25, 40, 40

C TEST FOR THRUST LIMIT SWITCH ON POINT DURING INTEGRATION

25 FI AG:] o0
35 DFL:DFL*ABSF((WI(187)-WI(198) )/(,'_I(187)-W2(187)) )

C <ELYCTION OF STEP r_EGINNI.,'<L_ AT S,vITCH POINT

_,q 15 l:l , 240

O_(1)=DI(!)

35 :.'!2(i ):'.,:i( I )

CALL _UNKLJT(W2, D2, DEL)

C INTEGRATION OVER FULL STEP
4_. C_LL R'JN.<UT(W_%, OS, DEL/2.0)

CALL RUNKUT(WS, D3, DEL/2.0)

C T_UO ],"!TFGR_TIONS OF HALF STEP EACH

45 TEST=ASSF (W2 ( i74 )/W3 ( 174)-i.0 )/.O000US+. 0001

IF(TEST-2.0) 55, 55, 50

C DIFFEO=',rE..__.,_TEST OF FULL STEP AND HALF STEP INTEGRATION

5.) DEL=DEL/TEST-_*. 25

55 IF(TEST-.05) 60, 60, 70

60 DEL=;4INIFCNL(211), DEL/TEST**°25)

C SELECTION OF STEP. SIZE FROM ERROR TEST
7:: '_0 75 I=!, 240

D] (1)=O3(1)
75 '.,.'I(I):'.VS(I).

C STORAGE OF INTEGRATED VALUES FOR NEXT INTEGRATION STEP

'."1 ( 223 ) =TEST*. 000003
IF(WZIi75)-FLAGI 80, 90, 80

80 W1 (212):WIII75)-FLAG

W] (175) :FLAG
C STORAGE OF THRUST LIMIT SWITCH POINT

CALL DERV(!,,!I, D!)

'"] (212)=0.0

03 R_TURN
END

54
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RUN<UT

LA_EL

LTqT
SUBROUTINE RUNKUT(W1, D1, DEL)

_',I6ROUTINE PERFORMS INTEGRATION USING K.UTTAS SIMPSONS RULE

L.--T X_:- = DX/DT
X* = F(X,T)

(XO)* = F(XO, TO)
(Xl)* = F( (XO + .5(DEL T)(XO)*), (TO + .5(DEL T)) )

(X2)* = F( (XO + .5(DEL T)(X1)_'), (TO + .5(DEL T)) )
(X3)* = F(XO +

DEL X = (DEL T)
DI::{NS[ON W!(240), D1
C_I):.5

$.(2)=.5

C(3)=l..O
O0 5 I=l, 168

!,!(i-,-72)=Wi(!+72)
5 O(I, !)=DI(1)

O0 15 L:I , 3

== D_L*C ( L )

UO !_ [=] , 168

!_ "'( Z)=_'!l( I )+E*O I, L)

]5 CALL DERV(W, O i, k+l

E=OEL/6.0
O0 2,0 I:i, 168

20 W!(I)=WI(1)+E* D(I, 1
CALL OERV(W1, D1)

qFTURN
END

DEL T)(X2)*), (TO + DEL T) )
(XO)* + 2(X1)* + 2(X2)* + (X3)*)/6

168), W(240), D(168, 4), C(3)

+2.0*(D(I, 2)+D(I, 3))+D(I, 4))

3O
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* INVERT
* LABEL
* LIST

SUBROUTINEINVERT(N,QQ)
C SUBROUTINEINVERTSMATRIXBYSIMULTANEOUSDOUBLEPRECISION
C ROWREDUCTIONOF THEMATRIXTO IDEMANDIDEMTO THEINVERSE
D DIMENSIONOQ(IO, i0), O(lO, 20)

DO10 I=i, 10
DO5 J=1, 10
Q(I, J)=QQ(I, J)
O(I, J+lO)=O.O
Q(19 J+20)=O,O

5 Q(I, J+30)=O.O
10 Q(19 I+10)=1.0

DO30 I=19 N
DO14 J=I9 N
IF(ABSF(Q(I, I))-A_SF(Q(J, I)}) 11, 14, 14

C TESTFORLARGESTELEMENTIN COLUMN
ii DO 12 K=I, N

D S:O(J, K)

D Q(J, K)=Q(I, K)

D O(I, K)=S

D S=Q(J9 K+IO)

O Q(J, K+I0):Q(I, K+I0)

D 12 Q(I, K+10)=S
C TRANSFER ROW OF LARGEST ELEMENT TO FIRST ROW

14 CONTINUE

D DIV:Q(I, I)

DO 15 J=l, N
D Q(I, J)=Q(I, J)/DIV

D 15 Q(I, J+IO)=Q(I, J+IO}/DIV
C DIVISION BY DIAGONAL ELEMENTS

DO BO J=19 N

IFCI-J) 20, 309 20

D 23 DIV:Q(J, I)
DO 25 K=I, N

D Q(J, K}=O(J, K)-O(I, K)*DIV

D 25 Q(J, K+IO)ffQ(J, K+10)-Q(I. K+10)*DIV
C DIAGONALIZATION OF MATRIX

3_ ¢ONTIMUE

DO 35 I=1, N

DO 35 J=l, N

35 OO(l, J):Q(I, J+lO)

RETURN
END

TOTAL 289*
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DERV
' ^_EL

LIST

FURROUTINE DERV(W, Dll
LINEA_ OP T I ,v,U_/,

SUBROOTINE ESTABLISHES DIFFERENTIAL EQUATIONS OF SYSTE,"!

O!_';_:NSION W(12, 20), 0(12, 14), 01(168)

R=SCRTF(W(I, I)_,_,'-2+W(I, 2)_2+W(I¢ 3)_H_2)

Ri'_3=W(7 , 1 7 )/R_H_'3

RFI5 =3.,3-_ R;4 3 / R_H_ 2
RL=RI_IS_(W(I_ I)_W(29 4)+W(I, 2)_W(2, 5)+W(I, 3)_('I._(2, 6))

COP',PUTATION OF GRAVITATIONAL GRADIENT
A2=S,QRTFIW(2, 4)-_'2+W(2, 5)_2+W(2, 6)_2)

D 5, 1 =l.O

D 5, 2 =W(6, 17)/W(I, 7)_'W(7, 15)

D _, % =D(5, 2)*_'2

D 5, 4 =.5_-A2_'_D(5, 2)

D 5, 5 =D(5, 2)_W(I, 7)

D 5, 6 =D(5, 2)/W(I, 7)_W(6, 17)

DERIVATIVES OF PARAMETRIC VARIABLES

W 6, i5)=R

STORAGE OF R FOR ERROR TEST

W(6, 16)=,XAXIF(A2_W(I, 7)/WI6, 17)_,_W(8, 15), 1.0)

W(7, 16)=A2_,'-W(I, 7)_W(8, 15)

CO,_4PUTATION OF THRUST SWITCHING FUNCTION

DO 1C I=i, 3

•','(6, I+I7)=W(2, I+3)_'D(5, 2)/A2

COMPUTATION OF ACCELERATION VECTOR

O(l, I)=W(I, I+3)

D(!, I+3)=W(6, I+I7)-RM3_W(I, I)

EQUATIONS OF AOTION

D(2, I)=R_'43"_W(2, I+3)-RL*W(i, I)

i_ D(2, I+3)=-,'J(2, I )
EULER EQUATIONS (MASS INDEPENDENT)

D(I, 7)=-W(6, 17)/W(8, 16)'x-',,,'(7_15)

PIASS RATE EQUATION

O(2, 7)=W(2, 7)*D(5, 2)/W(8, 16)

EULER EQUATION FOR vASS
D(.%, 7)=..F(5, 7)_D(5, 2)/W(8, 16)

ADJOiNT EQUATION FOR _,IASS SENSITIVITY
DO 2C I=i, 6

D(3, !)=','.'(I+5, l+)_W(6, 18)+W(I+5, 5)-x-v.;(6, zg)+w(I+5, 6)-'-",'(6, 20)

=QUATION FOR ETA VECTOR

,'_(_ I)=','i(_+5, 4)';_W(2, 4)+W(I+5, 5)_W(2, 5)+W(I+5, 6)_''W(2, 6)
OUANTITY USED IN _',I STAR ;'4ATRIX

RL=RIS-_(V,'(I+5, 4)_W(l, I)+W(I+5, 5)<-'."(I, 2)+W(I+5, 6)e_W(l, 3))

D( I+5, 7)=D(3, I )/W(I, 7)

ADJOiNT EQUATIONS FOR FIASS DEPENDENCE
,90 20 J=l, 3
D(I+5, J)=R:'I3_W(I+5, J+3)-RL_W(I, J)

2,-, D( I+5, J+3)=-W( I+5, J)

ADJOINT EQUATIONS (MASS i;"4DEPENDENT)

TOTAL

52
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RL=(W(2, I)*W(2, 4)+W(2, 2)*W(2, 5)+W(2, 3)*W(2, 6))*A2*W(I, 7)
C QUANTITY USED IN M STAR MATRIX

DO 30 I=i, 6
DO 30 J:l, 6
F:G.O

25 F:F+W(I÷5, K+3)*W(J+5, K+3)

O(I÷5, J+7)=(F-0(3, I)*D(3, J)/O(5, 3)I'0(5, 2)/A2

C DERIVATIVE OF M STAR MATRIX

V!(I+5, J+7):W(I+5, J+7)+W(4, I)*W(4, J)/RL*W(6, 17)*W(8, 18)

C CORRECTION TO M STAR FOR VARIABLE INTEGRATION TIME
W(J+5, I+7)=W(I+5, J+7)

30 D(J+5, I+7):D(I÷5, 0+7)

C M STAR IS SYMMETRIC

DO 40 I:I, 168

40 Dl(1)=D(l, I)

RETURN
END

TOTAL

18

18"
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C

C

C

C

3Fr{V

L_B=L

LIST

SUJROdTINE DERVIW, DI)

QUADRATIC OPTIMUM

SUBROUTINE ES]ABLISHES DIFFERENTIAL EQUATIONS OF SYSTEM

DIMENSION W(12, 20)t 0(12, 14), OI(16B)

l.I(_, ]5)=I.0
R=SO_TF(W(I, I)*_2+W(I, 2)*'2+W(I, 3)**2)

R;'_3=L'(7, 17) /R*¢_3

R M 5 =3.0 ,"-R;q3 /R _-_,_2

RL=RMS¢_(_#(I, I)_W(2, 4)+W(I, 2)_W(_2, 5)+W(I, 3)_W(2, 6))
COMPUTATION OF GRAVITATIONAL GRADIENT

A2=SQ_TF_W(2, 4)¢:-_2+W(2, 5]_2+W(2, 6)'m_2)

G24ASS=W(2, 7)_W(I, 7)_2/W(8, 17)

GAM=MAXIF(A2/W(6, 17)_W(I, 7)-G/,ASS, 1.0)
THRUST LIMIT SWITCHING FUNCTION

STAR=W(7, 151#(W(1, 7)/W(6, 17)I_H_2

QUANTITY USED IN M STAR MATRIX

D 5, !)=l.C

D 5, 2)=A2/(GAM+GMASS)
0 5, 3):D(5, 2)_,'-¢_2

% -%, A) :.6"_C_AFI_D(5, 3)
O 5, 5)=_(5, 2)s,_W(l, 7)

D m, ,%)=9[5, 2)/W(I, 7){'W(6, 17)
DERIVATIVES OF PARA_'q_TRIC VARIADLES

_' 6, 15)=R

STORAGE OF R FOR ERROR TEST

'(5, 16)=GAM
,',(7, !6)=A2_,_W(I, 7)-GiqASS¢('W(6_ 17)

STORAGE OF THRUST LIMIT FU;NCTIOiX

90 I0 I=l, 3
W 6, I+17)=',;(2, !+3)I(GAM+GMASS)

COMPUTATION OF ACCELERATION VECTOR

D ], i)=W(!, I+3)

D !, I+3)=W(6, I+I7)-RM3_W(I, I)

EQUATIONS OF MOTION

0(2, I)=R:".'IS<'iV{2, I+3)-RL_W(I, I)

i0 D(2", I+3)=-W(2, I)

EULER EQUATIONS (MASS INDEPENDENT)

D(], 7)=-D(5, 3)_I,'/(i, 7)_H_21W(8, 17)/2.0

MASS RATE EQUATION

.0(2, 71:W(!: 71_0(5, 31/W(8, 171"_W(2, 7)

EULER .EQUATION FOR MASS

b(5, 7)=W(I, 7)_D(5, 3)/W(6_ 17)_W(5, 7)
AOJOINT EQUATION FOR MASS SENSITIVITY

DO 20 I=i, 6
D(3, .'):4(I+5, 4)'x'W(6, 18)+W(i+5, 5)-x'W(6, 19)+W(1+5, 6)',>W 6, 20)

EQUATION FOR ETA VECTOR

RL:R45*(WII+5, 4)_W(I, I)+WII+5, 5)_:-¢(I, 2)+W(I+5, 6)_'.VII_ 5))

D(I+5, 7)=D(3, I)/W(1, 7)

ADJOINT EQUATIONS OF MASS DEPENDENCE

TOTAL
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DO 2rJ J=l, 3

D(I+5, J)=R;43*WCI+5, J+31-RL_W i, Jl

20 D(T+5, J+B)=-W(I+5, J)
AL)JOINT EQUATIONS (i4ASS IND£PENDENT)

DO 30 l=I, 6
DO 30 J=l, 6

£=0.0
DO 25 K=I, "B

25 F=F+W( I+5, ,<+3)*W(J+5, K+3)

D(I+5, J+7)=(F-D(3, I)_D(3, J)_STAR)/GAM
DERIVATIVE OF M STAR MATRIX

3,3 D(J+5,, I+7)=D(I+5, J+7)
M STAR IS SYMMETRIC

_O 40 I=l, 168

40 DI(1)=D(I, i)

R ETURN
END

TOTAL

17

17_
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APPENDIX H

NUMERICAL RESULTS

H. 1 Introduction

In this appendix the computer output data from a sample run of

each control mode are reproduced. The data sheets are in general

self explanatory except perhaps for the format of the j_. matrix and

the units.

All parameters and variables derived in the linear theory are

printed out. In addition, the important variables are plotted in Figures

H-a through H-r.

H. 2 Format and Units of the Data

The first pages of each example contain:

1. ) The time in days from initial point,

2. ) The acceleration program in units of 10-4g o,

3. ) The acceleration magnitude in units of 10-4go ,

4. ) The position in A. u.,

5. ) The velocity in A.u. per day,

6. ) The normalized mass,

7. ) The switching parameter, _.

The coordinates are computational coordinates in all cases.

Following the state and acceleration data are the terminal values

of interest printed as column vectors. The units are A.u. and A. u.

per day.

The elements of the M* matrix, which are the next set of numbers,

are not particularly interesting and may be disregarded.

Adjacent to the M* matrix is the cost quantity J with units of

(A. u. )2 per (day) 3.
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The next set of pages contain the elements of the j_. matrix for

both optimal acceleration and optimal thrust programs. For each time

point, the array consists of 50 elements which are interpreted as par-

tial derivatives or influence coefficients. The array is ordered as in

the equation

s_sf= A(t) Ss_t

The first 49 elements are the adjoint set for an optimal thrust program.

The adjoint set for an optimal acceleration program is obtained by re-

placing the seventh column with zeros for the first six elements, and

replacing the 1 with the element below it. That is: the array

yields

and

-All -/%12 ----A-13

J_-21 -A-22 .-fl_-23

O T O T 1

A. 33

.A. (optimal thrust)

w

All -A12 -_13

A21 -/_22 J_23

O T O T 1

_/_ (optimal acceleration)

p

J_ll A-12 O

J_21 J_22 O

0 T 0 T_ -A-33

The applicable submatrices, interpreted as partial derivatives, are
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8rf 8rf 8rf

art avt amt

8vf avf avf

8r t 8v t amt

amf amf 8mf

art a_vt amt

The units are A.u. and A.u. per day for position and velocity. The

seventh column is with respect to a 100% change in mass. For example
A.u.

the units of .ar_f are

am t 100% change in mass

The first set of data is for unrestricted VSI control.

= 1 2XI0 -4
set is for CSI control with a ° . go"

The second
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Fig. H-a. Acceleration schedule for 150-day Earth-Mars transfer.
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Fig. H-cl. Sensitivity of rx (tf) to position variations.

150

160



Orx(t f)

8v X

rx(t f]

8Vy
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Fig. H-e. Sensitivity of rx (tf) to velocity variations.
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Sensitivity of ry (tf) to position variations.
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Fig. H-g. Sensitivity of ry (tf) to velocity variations.
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Sensitivity of vx (tf) to velocity variations.
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Fig. H-I. Sensitivity of Vy (tf) to position variations.
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Fig. H-p. Sensitivity of r (tf) to mass variation for optimal thrust program.
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Fig. H-q. Sensitivity of v (tf) to mass variation for optimal thrust program.
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Fig. H-r. Sensitivity of m (tf) to mass variations for optimal acceleration program.
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